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Abstract

In the past two decades, Matrix Product States (MPS) have become an essential tool
in the study of quantum many-body systems. They are widely applied in most fields
of condensed matter physics, both by theoreticians who study new hypothetical models
and experimentalists who study low-temperature magnetic properties of materials. This
thesis aims to present a comprehensive review of the algorithms that rely on MPS, their
strengths, applications, and limitations. As a first step, we dive into the essential physics
required to understand the models MPS aims to solve. Afterward, we go into detail on
the structure of the two principal algorithms – Density Matrix Renormalization Group
(DMRG) and Time Evolving Block Decimation (TEBD), both in the case of finite and
infinite systems. We conclude by presenting original results from the application of MPS-
based methods to solvable and non-analytically solvable models.

iii



Изследване на квантови спин вериги с матрични
продуктови състояния

Дипломна работа представена за частично покриване на изискванията

за образователно-квалификационна степен

бакалавър "Физика"

от

Христо Георгиев Тончев

(факултетен номер: 60289)

Катедра Теоретична Физика
Физически Факултет

Софийски университет „Св. Климент Охридски“

19 юли 2022 г.



© Авторски права:
ХРИСТО ГЕОРГИЕВ ТОНЧЕВ
2022



Одобрена от

ръководител:
д-р Марин Буков

консултант:
доц. д-р Петър Иванов

рецензент: д-р Питър Клейс

дата на защитата: 29.07.2022



Декларация за
оригиналност и автентичност

Аз, Христо Георгиев Тончев, студент от Физически Факултет на Софийс-
ки университет „Св. Климент Охридски“, декларирам, че представената от мен
за защита дипломна работа на тема: „Изследване на квантови спин вери-
ги с матрични продуктови състояния”, за присъждане на образователно-
квалификационна степен бакалавър "Физика" е оригинална разработка и съдържа
оригинални резултати, получени при проведени от мен научни изследвания (с под-
крепата и/или съдействието на научния ми ръководител).

Декларирам, че резултатите, които са получени, описани и/или публикувани от
други учени, са надлежно и подробно цитирани, при спазване на изискванията за
защита на авторското право и на академичната етика и стандарти.

Уведомен/а съм, че в случай на констатиране на плагиатство или недостоверност
на представените научни данни, Комисията по защитата е в правото си да я от-
хвърли, а Комисията по академична етика към Министерство на образованието и
науката е в законното си правото да анулира придобитата образователна степен.

Декларирам, че настоящият труд не е представян пред други университети, ин-
ститути и други висши училища за придобиване на образователна и/или научна
степен.

София
19 юли 2022 г.

Христо Георгиев Тончев
факултетен номер: 60289
Физически Факултет
Софийски университет
„Св. Климент Охридски“

ii



Абстракт

През последните две десетилетия Matrix Product States (MPS) се превърнаха в осно-
вен инструмент в изследването на квантовите системи от много тела. Те се прилагат
широко в повечето области на физиката на кондензираната материя, както от тео-
ретици, които изучават нови хипотетични модели, така и експериментатори, изуча-
ващи нискотемпературните магнитни свойства на материали. Тази дипломна работа
има за цел да представи цялостен преглед на алгоритмите, които разчитат на MPS,
техните силни страни, приложения и ограничения. Като първа стъпка ще разгле-
даме основната физика, необходима за разбирането на моделите, които MPS цели
да реши. След това ще навлезем в подробности за структурата на двата основни
алгоритъма –Density Matrix Renormalization Group (DMRG) и Time Evolving Block
Decimation (TEBD), както в случай на крайни, така и на безкрайни системи. Накрая
ще завършим представяйки оригинални резултати от прилагането на MPS-базирани
методи към решими и не аналитично решими модели.
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Chapter 1

Introduction

Quantum spin-1
2

chains exhibit a wide ensemble of interesting phenomena. Such as
fractional quantum Hall effect [1], Dynamical quantum phase transitions [2], Ergodicity
breaking phase transitions [3] and many more. Even more, they find applications both
in quantum computers and quantum simulators. Where they can represent a practical
realization of qubits, the quantum bit of information or a ground state of an adiabatic
algorithm in a quantum simulator [4].

Nevertheless, these systems are notoriously difficult to simulate. For any spin chain
with more than a few dozen particles, even the most cutting-edge supercomputers would
be unable to calculate an exact solution. The reason is that for a system of size N , the
required memory to encode its state scales as 2N , and operations required to identify
the ground state of a given Hamiltonian are of the order O(23N). That is why numer-
ous approximate numerical techniques have been developed in recent decades. Both by
physicists and mathematicians, to better understand the relevant properties of quantum
spin-1

2
chains.

At the forefront of these methods are the ones based on Matrix Product States (MPS).
They allow us to efficiently search for a given model’s ground states and ground state
energies. To measure both local and global observables and to simulate the time evolution
of the state by solving the Schrodinger equation

H|ψ⟩ = iℏ
∂

∂t
|ψ⟩. (1.1)

In addition, unlike other methods, MPS-based algorithms first simulate the approximate
state and then extract the required information from it. Meaning that one can perform
all measurements he is interested in on to a single state. Not having to use different
approaches depending on the quantity and model parameters he wants to investigate.

This thesis aims to introduce the notion of MPS pedagogically. To explore their main
features, review the strengths and weaknesses of the algorithms that rely on them, give a
background on the essential physics that they aim to solve, and present a comprehensive
summary of the possible applications. In Chap. 2 we go over the basic physics concepts we
need in order to understand the applications of MPS. In chapters 3 and 4 we present the
structure of the two essential algorithms, both for the case of finite and infinite systems.
We then conclude with Chap. 5 in which we explore different properties of the Mixed
Field Ising (MFI) and Unifrom Ising models calculated through the usage of the MPS-
based algorithms. Such as quantum phase transitions, ground state energy, entanglement

1



entropy, order parameters, and many others.
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Chapter 2

Quantum Mechanics Prerequisites

2.1 Two-Level System

We begin our overview of quantum mechanics with the study of two-level systems. A
two-level system is a quantum system that prior to measurement, exists in a superposition
of two physically distinguishable states. After measurement, it is observed with a certain
probability, to be in only one of the two. The state of such a system, i.e. its wave function,
can be described using a state vector |ψ⟩ defined on the two dimensional Hilbert space
C2. This system is important to us because it is essential for the notion of a qubit –
the building block of quantum computers. Indeed qubits are mathematically modeled
by a two-level system, which means that they exhibit quantum properties. From this it
follows that unlike classical bits, which have a predetermined value of either 0 or 1, their
quantum counterparts do not have a fixed value before measurement. It is only after a
measurement that they take on a concrete value and we observe either 0, which means
that the systems is then in the "up" state |↑⟩, or 1, corresponding to the "down" state
|↓⟩. Common examples are either a spin-1

2
particle, which we will further explore, or

polarization-entangled photons that appear when an atom emits in a cascade process [5].

2.1.1 Stern-Gerlach Experiment

The study of two-level systems in quantum mechanics finds its origin in the Stern-Gerlach
experiment. The main result of the experiment is the quantized magnetic properties of
electrons; more precisely, the spatial orientation of angular momentum is quantized and
can take only two discrete values +1 or -1 in units of Planck’s quantum ℏ Ref. [6].

Figure 2.1 illustrates the setup of the experiment. Two magnets create an inhomo-
geneous magnetic field B⃗ in the z–direction. Randomly oriented silver (Ag) atoms are
produced in an oven and then pass through a collimator. Afterward, the beam goes
through a region of constant magnetic field gradient. The experiment uses Ag because
its magnetic properties are defined solely by the single 5s-orbital electron. All other elec-
trons form a spherically symmetric cloud with no net angular momentum. The atoms
are then observed on a detector placed after the magnetic field. The idea is the following:
if a particle with magnetic moment µz is moving through the magnetic field region, the

3



Beam of silver atoms

Intensity

Figure 2.1: Sketch of the Stern-Gerlach experiment. In contrast to what we expect from clas-
sical Electrodynamics, randomly orientated silver atoms are shown to have quantized magnetic
moment. Here B⃗ is an inhomogeneous magnetic field created by two permanent magnets labeled
by N and S

force acting on it is given by

Fz ≈ µz
∂Bz

∂z
. (2.1)

Here we have ignored the forces in the x and y directions, produced by the other two
components of B⃗ as they can be canceled with an appropriate choice of an electric field
Ref. [7].

The particle’s trajectory in the inhomogeneous magnetic field will depend on the sign
of its magnetic moment µz. Classical mechanics predicts all values of µz to be realized
in the interval [−|µ|, |µ|]. Thus, we expect to see a continuous spread of particles on the
detector. However, this is not what Stern and Gerlach observed. Instead, the experiment
showed that the locations of the particles are clustered around two points symmetrically
spread around the spot they would have reached had there not been a magnetic field.
However, since the atoms are prepared in a randomly oriented state, we do not expect
there to be a preferred direction of orientation.

To explain these experimental results, we need to define an intrinsic quantum property
of elementary particles, called spin. The spin for an electron is such that it takes only
the two discrete values ±1

2
. Silver atoms are, of course, not elementary particles; thus,

they inherit their spin properties from the elementary particles they consist of. As we
mentioned, Ag’s magnetic properties are solely defined by its 5s electron. More precisely,
all other electron spins are compensated by spins of opposite directions, and the spin of
the nucleus has a negligible effect in this setup.

In modern quantum mechanics, we now know that the states corresponding to the
±1

2
values of the spin are the eigenstates of σz (the z-Pauli matrix). We say that the

σz operator is the quantum observable for the spin component in the z-direction. An
observable is a physical quantity that can be measured and to which we juxtapose a
Hermitian operator acting on the elements of the Hilbert space. The eigenvalues of an
observable determine the possible outcomes of a measurement. That is, after performing
an experiment, the result is always an eigenvalue of the observable, and the system’s state
after the measurement has collapsed to the eigenstate corresponding to the measured
eigenvalue.

4



Of course, the direction of the axes in an experiment is arbitrary; we could have
equally chosen a measurement along the x or y-axis. In such a case, we should use the
σx or σy observable to find the system’s state.

2.1.2 Mathematical Model for a Two-Level System

We now continue by introducing the mathematical apparatus of a two-level system. As we
have seen in the previous section, the value of the spin in any direction of 3-dimensional
space can take only two discrete values. We looked at a special case of an observable
along the z-axis, but a general observable can point in any direction and can be expressed
as a linear combination of the identity operator I and the three Pauli matrices σi. In the
eigenbasis of σz, the Pauli matrices can be represented as:

σz =

[
1 0
0 −1

]
, σy =

[
0 −i
i 0

]
, σx =

[
0 1
1 0

]
. (2.2)

It is worth noting that all Pauli matrices have an eigenvalue of either plus or minus one.
The eigenvectors of σz we abbreviate by |↑⟩ and |↓⟩ and they satisfy the following relation:

σz |↑⟩ = 1 |↑⟩ , σz |↓⟩ = −1 |↓⟩ . (2.3)

Since they are eigenvectors of a non-degenerate matrix with a non-zero determinant,
they form a basis in C2. Moreover, as we mentioned in Sec. 2.1 we can represent the
quantum state of a two-level system as a vector in the Hilbert space C2. We can thus use
|↑⟩ and |↓⟩ to uniquely represent any quantum state:

|ψ⟩ = c0 |↑⟩+ c1 |↓⟩ . (2.4)

Here the coefficients c0 and c1 have the following interpretation: The probability of
observing the system in the |↑⟩ state is |c0|2, and correspondingly the probability of
observing it in the state |↓⟩ is |c1|2. Due to the conservation of probability, we have the
normalisation condition:

|c0|2 + |c1|2 = 1. (2.5)

The above expression naturally leads us to the definition of an expectation value of
an observable. In quantum mechanics, the expectation value of an observable O is the
expected value of the result of an experiment measuring the physical quantity associated
with it. The expression for the expectation value of an observable, when the system is in
a state |ψ⟩, is defined as:

⟨O⟩ = ⟨ψ|O |ψ⟩ . (2.6)

For example if a system is in the up state |↑⟩ and we measure the spin in the z-direction,
the expectation value will be:

⟨σz⟩ = ⟨↑|σz |↑⟩ = 1. (2.7)

To complete our overview of operators in the two-level system, we need to introduce
the lowering σ− and raising σ+ operators for spin-1

2
particles. Their definition through

the Pauli matrices is
σ− =

σx − iσy

2
σ+ =

σx + iσy

2
. (2.8)

5



The main characteristics of these operators are how they act on the base vectors |↑⟩ and
|↓⟩.

σ− |↑⟩ = |↓⟩ σ+ |↓⟩ = |↑⟩ . (2.9)

We interpret Eq. (2.9) in the following way: If a particle is in the down state |↓⟩ the σ+

operator "raises" the particle to the up state |↑⟩, and vice-versa if a particle is in the up
state the σ− operator "lowers" the state of the particle to |↓⟩. The operators have the
anti-commutation relations {

σ+, σ−} = σ+σ− + σ−σ+ = 1,{
σ+, σ+

}
= σ+σ+ + σ+σ+ = 0,{

σ−, σ−} = σ−σ− + σ−σ− = 0.

(2.10)

Such relations for the lowering and raising operators is typical for fermionic particles,
although, as we will see in Sec. 2.4 spin-1

2
are neither fermions nor bosons. Nevertheless,

in Sec. 2.4 we show that through σ− and σ+ we can make a relation between the different
types of particles and utilize it to solve the Ising model (I will have referenced it in the
Introduction). As a final note, in the eigenbasis of σz the lowering and raising operators
have the following representation:

σ− =

[
0 0
1 0

]
σ+ =

[
0 1
0 0

]
. (2.11)

2.1.3 Bloch Sphere Representation and General Observables

We conclude our overview of the two-level system with the definitions of a Bloch sphere
and a general observable.

As we showed in Eq. (2.4) we need two complex coefficients to describe the system’s
state. We thus need four independent real variables to describe a two-level system. The
normalisation condition imposes a requirement on the coefficients, eliminating one degree
of freedom. Moreover, using basic algebra, one can make the first coefficient real by
pulling out a global phase in front of the vector. In quantum mechanics, the global phase
of a quantum state does not matter since it cannot be measured. These facts allow us
to represent the wave function only in terms of two angles φ ∈ [0, 2π) and θ ∈ [0, π] on
the so-called Bloch Sphere, cf. Fig. 2.2. The Bloch sphere helps visualize the state of the
two-level system as it compresses a 4d space to a 2d one, which allows it to represent any
wave function of a two-level system.

We said that a general observable measures the value of the spin in an arbitrary
direction. We now give the expression of the general observable σu⃗, where u⃗ represents a
unit vector in the direction of the observable. In terms of φ and θ in the eigenbasis of σz

we represent σu⃗ as:

σu⃗ = cos θ σz + sin θ cosφ σx + sin θ sinφ σy =

[
cos θ e−iφ sin θ
eiφ sin θ − cos θ

]
. (2.12)

It is worth noting that similar to the Pauli matrices the eigenvalues of σu⃗ are once again
±1, which means the spin is quantized in every spacial direction. The eigenvectors of σu⃗

are denoted by |↑u⃗⟩ and |↓u⃗⟩; their representation in the eigenbasis of σz is:

|↑u⃗⟩ = cos
θ

2
|↑⟩+ sin

θ

2
eiφ |↓⟩ . (2.13)
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Figure 2.2: Bloch sphere with pole states being the eigenvectors of σz

|↓u⃗⟩ = sin
θ

2
|↑⟩ − cos

θ

2
eiφ |↓⟩ . (2.14)

It is clear from this expressions that the eigenstates of the generalised observable cover
all states in the Hilbert space, for example we get the |↑⟩ and |↓⟩ states for θ = 0 and
φ = π. We can also see how the probability of observing ±1

2
when measuring σz changes

with the direction of the unit vector u⃗. For example, in the case of σz the probability of
observing +1

2
when measuring it on |↑u⃗⟩ is cos2 θ

2
. From the normalisation condition it

follows that the probability of observing −1
2

is sin2 θ
2

From Eq. (2.4) we know that the normalized wave function is represented using two
complex coefficients. In Bloch sphere representation, this leads to the following expression
for the wave function:

|ψ⟩ = cos
θ

2
|↑⟩+ eiφ |↓⟩ sin θ

2
. (2.15)

2.2 Coupled Two-Level Systems. Quantum Entanglement

Until now, we have considered only a single non-interacting two-level system, described
by the Hilbert space C2. However, non-interacting systems are an idealisation. Even
when considering the Stern-Gerlach experiment, we assumed, without explicitly stating,
that the act of measurement does not couple our particle to the measuring apparatus.
Such an assumption might be reasonable in most cases, but when trying to understand
the subtle details of the interaction, one must consider composite systems [5]. As we will
see, interaction also lies at the heart of quantum computing. When describing a system
of N -qubits, it is precisely because of their interaction that we get exponential growth in
the parameters required to describe the system’s state.
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2.2.1 Composite Systems

We start by considering the most straightforward composite system – that of two in-
teracting two-level systems. We model this system by using the following mathematical
framework. Consider the composite system comprised of two subsystems A and B each
with its corresponding Hilbert space, respectively HA and HB. In both of them, we have
basis vectors |iA⟩ and |µB⟩ that span the whole of HA and HB. We can thus represent
the state of a composite system by a state vector defined in the Hilbert space HS, where
HS = HA ⊗HB. Here by ⊗, we denote the tensor product.

To clarify the idea of a composite system, let us explore the particular case of a
"product state". A system is in a product state when the two distinct subsystems it
is comprised of were prepared independently of each other and did not interact in their
evolution. The state of each subsystem is described independently of the other one,
with an appropriate wave function, either |ψA⟩ or |ψB⟩. Here both |ψA⟩ and |ψB⟩ are
pure states on HA and HB, i.e., they are represented by a single state vector, not as a
superposition of two or more states. In this case, the composite wave function is given
by:

|ψS⟩ = |ψA⟩ ⊗ |ψB⟩ . (2.16)

For product states, a measurement performed on one of the systems does not affect
the other one; for all purposes, the two systems are independent.

In the non-trivial case, the two systems either interacted during their evolution by an
interaction Hamiltonian or were prepared as a non-product state. Then the state vector
can not be represented as a product state, like in Eq. (2.16). In this case, the basis
expansion of |ψS⟩ is

|ψS⟩ =
∑
iµ

βiµ |iA⟩ |µB⟩ , (2.17)

where βiµ are complex coefficients with the normalisation condition
∑ |βiµ|2 = 1.

It is helpful to imagine two independent particles observed in two far-away labs when
thinking about a product state. The measurement of one does not change the state
of the other, and for all purposes, they are non-interacting. While in the case of a
non-product state, we might imagine two scientists performing the same experiment on
particles in different labs. However, the result that the first scientist gets when performing
an experiment in some way affects the result of the second scientist. We will further
explore this notion in Sec. 2.2.3.

Coming back to Eq. (2.17) one question we could ask ourselves is: Is this the unique
representation of the state vector? The obvious answer is no. Any vector in a Hilbert
space can be represented using an arbitrary basis. One such representation is the Schmidt
decomposition, defined the following way:

|ψS⟩ =
∑
α

Λα |α⟩A ⊗ |α⟩B , |α⟩A(B) ∈ HA(B). (2.18)

Here the states |α⟩A(B) are such that they form an orthonormal basis on their respective
subspace HA(B). All Schmidt singular values Λα are real and positive, it can also be shown
they are normalised

∑
α Λ

2
α = 1 [8]. The main advantage of the Schmidt decomposition

is that in special cases, only a small amount of Λα have a significant contribution. Thus
allowing us to neglect terms with negligible contribution and reducing the amount of
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information required to recover the original state. In Chap. 3 we will further convince
ourselves that the Schmidt decomposition is a much more useful representation and is
essential for the numerical methods we develop.

2.2.2 Density Matrix

From Eq. (2.16) we know that for a composite wave function to represent a product state,
we have to be able to write |ψS⟩ as a tensor product of two state vectors. While from
Eq. (2.17) it is evident that for arbitrary βiµ the wave function can not be represented
as a simple tensor product of two state vectors. To illustrate this we give the simplest
example of a coupled system in a non-product state, two interacting spin-1

2
particles.

Such a state is the triplet state

|ψtriplet⟩ =
|0, 1⟩+ |1, 0⟩√

2
, (2.19)

where by |0, 1⟩ we have denoted |0, 1⟩ = |0⟩ ⊗ |1⟩. The triplet state is clearly not repre-
sented via a direct tensor product of two state vectors, and thus represents a non-product
state.

Until now, we have used the formalism of state vectors to describe the state of a
system. Nevertheless, this is not an optimal way to describe a non-product state. The
main disadvantage of the state vector approach is the following: In the case of a product
state, we can calculate the expectation value of an observable OA defined only on HA, by
using Eq. (2.6). We are allowed to do this because from Eq. (2.16) we know that there
is a state vector |ψA⟩ that completely describes the state of HA. However, in the case
of a non-product state, there is no such vector because the global wave function |ψS⟩
does not represent a product state. Thus we cannot associate a single wave function |ψA⟩
with subsystem A. Which means that we can not measure the expectation value of the
observable, as it requires a state with respect to whom it is to be measured.

This problem shows that we need another approach to measure local expectation
values. That is where the density matrix formalism comes into play. The definition of
the density matrix ρ is

ρS = |ψS⟩ ⟨ψS| . (2.20)

For pure states, ρS carries the same amount of information as |ψS⟩ [7]. Thus there are no
disadvantages in using ρS to represent the system’s state. On the contrary, the density
matrix is much more useful when working with non-pure states. To see why this is true,
we first define the expectation value of an observable using the formalism of density
operators:

Tr(OSρS) = ⟨ψS|OS |ψS⟩ , (2.21)

where OS is an observable acting on state vectors in HS . As we can see the density
matrix gives us a conceptually easy way of calculating the expectation value of OS using
the Trace operation. Nevertheless we could have reached the same results using a state
vector. Thus Eq. (2.21) is not enough to justify our new approach.

The power of the density operator formalism comes into play when we want to measure
local expectation values. To do so we define a partial density operator ρA which will gives
us the complete predictive information about subsystem A [5]. We evaluate ρA by tracing
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out subsystem B in the following way:

ρA = TrB(ρS) =
∑
i,i′ ,µ

βiµβ
∗
i′µ

|iA⟩ ⟨i
′

A|. (2.22)

Using ρA, it is straightforward to find the expectation value of every local observable OA

⟨ψA|OA |ψA⟩ = Tr(OAρA). (2.23)

Thus we can make predictions for one system without considering the other, even for a
non-pure state where there is no single wave function |ψA⟩ that characterises subspace A.

One more thing to note is that ρA by construction has a non-zero determinant, i.e.,
there is at least one basis in which it is diagonal. In fact we have already introduced this
basis in Eq. (2.18). It is the Schmidt basis of the subsystem A labeled by |jA⟩. Thus in
it, we have the following representation of ρA:

ρA =
∑
j

λj |jA⟩ ⟨jA| . (2.24)

Here by λj we denote the eigenvalues of the density operator. Which have the following
relationship with the coefficients of the Schmidt decomposition:

Λj =
√
λj. (2.25)

Combining the normalisation condition of the initial wave function, and Eq. (2.25) we
get for λj the relation

∑
i=1 λi = 1. This identity shows us that if all λj, besides one,

are zero, the non-vanishing eigenvalue must be equal to unity. Which means that the
partial density operator will be a projector onto the quantum state corresponding to the
non-zero eigenvalue. We can see this clearly if we take λj to be the non-zero value, then
ρA has the following form:

ρA = |jA⟩ ⟨jA| . (2.26)

Clearly if we now apply ρA on to any state |ψA⟩ in HA it will act as a projector on to the
quantum state |jA⟩.

ρA |jA⟩ = |jA⟩ ⟨jA|ψA⟩ = ⟨jA|ψA⟩ |jA⟩ . (2.27)

In the next section we will convince ourselves that Eq. (2.26) is valid if and only if the
initial composite system is not entangled.

2.2.3 Entanglement Entropy of a Quantum System

We now introduce the notion of entanglement entropy. Entanglement entropy is a proxy
for the correlation between two systems. It gives us a way of quantifying how much
interaction is present between the systems we want to study. For example, in the case
of a product state Eq. (2.16) we mentioned that the two systems do not interact in their
evolution, which means that any measurement of one system gives us no information
about the state of the other. That is, even if we have perfect information about the first
subsystem, we will not know the state of the second one. That is why, as we will see, the
definition of entanglement entropy is such that it is zero for a pure state.

When talking about the triplet state, the situation is different. In it, prior to mea-
surement of subsystem A we have no way of knowing the result we will get, its either 1
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or −1 with 50% probability, but after measurement on A, we know with certainty the
state of B. As an example, if in the case of Eq. (2.19) we measure σz

A (with A indicating
that this observable acts only on subsystem A) and we get the result +1, we know that
subsystem B must be in the state corresponding to eigenvalue −1. We will see that such
a correlation between the systems equates to maximum entanglement entropy.

Before we continue with the formal definition of entanglement entropy we emphasize
on one fact. Quantum mechanics borrows the concept entanglement entropy from the
classical notion of entropy in statistical physics. So to better understand the quantum
case, we will first review its classical counterpart. Boltzmann defined the entropy of a
system to be equal to

Sthermal = −kB⟨log(pi)⟩ = −kB
∑
i

pi log(pi), (2.28)

where kB is the Boltzman constant, and pi is the probability that the system is in the
microscopic state i [9].

Now from the last section, we know that λi has the physical meaning of probability to
observe a subsystem in a given state. It is the reasonable to juxtapose them with pi, which
have the same meaning of probability, but in the classical sense. We also saw that when all
but one λi vanish, the quantum state of the entire system is not entangled. Looking back
at Eq. (2.28) we see that the same is true for the classical entropy. Thus it is reasonable
to borrow the notion of entropy from classical mechanics to define entanglement entropy
for composite systems.

One last to note is that the definition of entanglement entropy should be such that
the entanglement of A with B is the same as that of B with A. As have already said
entanglement measures the amount of interaction between two systems encoded in the
state. It thus makes no sense for system A to interact with B more than system B is
interacting with A.

A definition that fulfills these criteria is the following:

Sent = SA = SB = −
∑
j

λj log λj = −Tr(ρA log ρA) = −Tr(ρB log ρB). (2.29)

Here we will use the natural logarithm, but in some literature is also common to use a
base-2 logarithm, especially when applying this definition to quantum information.

We have already discussed the extreme case of a single non-zero eigenvalue. Now
using Eq. (2.29) we can give a complete graphical characterization of how Sent depends
on the distribution of the eigenvalues λj. For simplicity we will look at the case of a 2
two-level systems, i.e., there are only two eigenvalues in subsystem A.

Figure 2.3 gives a graphical representation of the dependency of Sent on the value of
the first eigenvalue λ1. Recall that the eigenvalues sum to unity, this means that the
second eigenvalue will equal λ2 = 1− λ1. We clearly see that the maximum in Fig. 2.3 is
observed when there is an equiprobable distribution (λi = 1/2), and the minimum – when
the distribution is deterministic (λ1 = 0 and λ2 = 1 or vice-versa), similar to classical
statistical mechanics. Knowing this if we now recall back to Eq. (2.26). We see that it is
indeed a valid representation of ρA, only if Sent = 0

From now on, we will use the notions introduced in this chapter to talk about the
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Figure 2.3: Dependency of Sent on the value of λ1 for a two-level system. We see that entropy
peaks for an equiprobable distribution and has a minimum for the deterministic case in which
one of the eigenvalues vanishes.

entanglement of a quantum system, which we will measure through our definition of
entanglement entropy.

2.3 Interacting Quantum Spin Chains

We continue our overview of quantum mechanics by introducing One-dimensional (1D)
spin chains. Quantum spin chains are a special case of a composite system consisting of
N spin-1

2
particles placed in a linear chain. The state vector of such a system |ψS⟩ is

defined on the global Hilbert space HS , where HS = H1⊗H2...⊗HN , with Hj being the
single-spin Hilbert space on the j-site, and N being the number of subsystems. Figure 2.4
gives a graphical representation of this system. As we can see, each spin can be oriented
in an arbitrary spacial direction. What is not illustrated, though, is that, despite the 1D
configuration, interaction may not be limited to a single spatial dimension. Each particle
can interact with its neighbors in all three directions. The x, y or z-th component of the
j-th spin could affect its neighbor’s neighbor’s x, y or z-th spin components.

The only substantial restriction in the models we will study is the assumption that
each spin can interact only with its nearest neighbors and an outside magnetic field. This
turns out to be a reasonable assumption as a large amount of materials exhibit such
interactions, for example, copper pyrazine dinitrate Cu(C4H4N2)(NO3)2, KCuF3 and
CuSO4 · 5D2O [10, 11, 12]. The most common way to describe these systems is through
the 1D Quantum Heisenberg model. It can give us a good description of the properties
of magnetic systems and has the advantage of being naturally realized in crystals and
other materials of interest to condensed matter physics. One of those properties, which
we will explore in the next sections, is the quantum phase transition.

Before we define what a quantum phase transition is, let us briefly recall the main
characteristics of a classical phase transition. In the most general terms, a phase transition
is a process in which a thermodynamic system transitions from one phase to another.
Where by phase, we understand a set of states of a system that have relatively uniform
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Figure 2.4: Graphical representation of an one dimensional spin chain, with open boundary
conditions

physical properties. We usually use the term to describe the transition between states
of matter, such as liquid, solid, or gas. A phase transition occurs due to the change of
external thermodynamic parameters, such as pressure or temperature, and we call the
"critical point" the point at which it occurs. It also often involves a process of symmetry
breaking. For example, when water transitions from a liquid to a solid, it loses translation
symmetry. More precisely, from the continuous symmetry of the fluid, the state of the
system transitions to the discrete symmetry of the crystal.

This kind of symmetry breaking can also be observed in quantum phase transitions.
Despite that, the cause of the two transitions is drastically different. A quantum phase
transition is a transition between two states of a quantum system, triggered by quantum
fluctuations (instead of thermal fluctuations). Just like the classical phase transition, it
is observed when varying different physical parameters, but unlike classical phase tran-
sitions, it occurs at absolute zero temperature [13]. In classical thermodynamics, such
a transition is impossible as for T = 0 the system should be in a single-phase indepen-
dently of any other external parameters. In quantum mechanics, though, fluctuations
are present even at T = 0, and are the reason behind quantum phase transitions [14].
Such a transition is characterised by an abrupt change in the system’s ground state. For
example, a system described by the Heisenberg model can transition from an antiferro-
magnetic ground state to a paramagnetic ground state at the critical point. Even more,
this transition turns out to be accompanied by process of symmetry breaking. Most
visible in the magnetization of the ground state, which we will explore in Sec. 5.1.1.

In the next sections, we will derive an expression for the critical point of a model
Hamiltonian, which will allow us to analytically see how the quantum phase transition
impacts the different properties of the model.

2.3.1 Quantum Heisenberg Model

The 1D Quantum Heisenberg model was first introduced in 1926 by Werner Heisenberg
[15]. Since then, it has found many applications in different fields of physics. Some notable
examples are the study of critical points and phase transitions of magnetic systems (which
we will explore numerically in Chap. 5), modeling the interaction of magnetic moments
in magnetic insulators, calculating specif heat capacity for low dimensional magnets, and
many more [16]. These applications are on their own enough to justify why the model has
been extensively studied both theoretically and experimentally, but there are two other
reasons, besides its practical applicability, why physicists have studied this model.

Firstly, in the years after the model was proposed, many theorists were drawn to
the possibility of finding exact solutions without having to deal with the complications
that arise in 3D models. They successfully extended the solutions for special 1D cases
to 2D ones. Such is the case for the Ising model, which we will discuss in the next
section. A large number of results were also achieved in calculating correlation functions,
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excitation energies, and thermal properties, both for the original model and for some of
its generalisations [16]. In short, the model was not only applicable to the real world but
was also simple enough to allow solutions through analytical expressions, which attracted
much interest from theoretical physicists, and continues to do so until this day.

The second reason is that numerical methods such as Density Matrix Renormaliza-
tion Group (DMRG), Time Evolving Block Decimation (TEBD) and their infinite chain
counterparts have proven to be immensely powerful in obtaining solutions to the Heisen-
berg model [17]. These methods are going to be the main focus of Chap. 3, and we will
see that by applying them, one can get results that are unattainable through analytical
expressions. Overall the Heisenberg model has proven a fruitful playground on which to
test new numerical methods, thus garnering even more interest from physicists.

Let us now present the mathematical expression for the model Hamiltonian. In
essence, the model attributes to each spin two types of interactions; one with its nearest
neighbor and one with an outside magnetic field. Both of these interactions are present
in all three spatial directions. The general Hamiltonian of the Heisenberg model has the
following form:

H = −1

2

(
N−1∑
j=1

Jz
j σ

z
jσ

z
j+1 + Jy

j σ
y
jσ

y
j+1 + Jx

j σ
x
j σ

x
j+1 +

N∑
j=1

hxjσ
x
j + hyjσy

j + hzjσ
z
j

)

= −1

2

∑
α=x,y,z

(
N−1∑
j=1

Jα
j σ

α
j σ

α
j+1 +

N∑
j=1

hαj σ
α
j

)
. (2.30)

Here the index j means that the spin operator σα
j acts on the j-site. More precisely

with σα
j we have denoted σα

j = I⊗j−1 ⊗ σα ⊗ I⊗N−j where I is the identity operator
on the single-spin Hilbert space. This form of the Hamiltonian corresponds to Open
Boundary Conditions (OBC). Adding one more term of the form σα

Nσ
α
N+1 is equivalent

to imposing Periodic Boundary Conditions (PBC). We will only consider OBC unless
specifically stated. We make this choice because the numerical methods we explore in
the next chapters perform worse when applied to systems with PBC. The reason for it
will become clear in Chap. 3.

The first part of Eq. (2.30) consisting of the interaction terms σα
j σ

α
j+1 corresponds

to the nearest neighbor interaction between two spins that are next to each other. The
second part of the equation models the single-spin coupling to the external magnetic field
along the three orientation axes. The constants Jα

j are responsible for the strength of
nearest-neighbor interaction, and correspondingly hαj give us the strength of the magnetic
field.

Analytical results for the general Heisenberg model are, in most cases, difficult to
derive. In fact, for most instances of practical interest, they are unattainable. Even more,
in the next chapter, we will convince ourselves that for large enough systems, states in
the Hilbert space can not be described by simply writing down their components, as the
required memory grows exponentially with the number of particles N . Because of this,
even through our numerical methods, we will only be able to describe a small part of the
Hilbert space occupied by the so-called "Area law states" (see Sec. 3.3). Taking these
considerations into account, we are faced with the following problem: How do we make
sure that our numerical results truthfully reproduce the results we would have gotten
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from the actual model had we been able to solve it analytically? To tackle this, we will
introduce a special case of the Heisenberg model, the transverse-field Ising model. We will
derive its energy spectrum analytically and in Chap. 5 compare analytical with numerical
results.

2.4 Transverse-Field Ising Model

As we mentioned, the Transverse-field Ising model is attractive because it can be solved
analytically, unlike the more general Heisenberg model. Nevertheless, we can still see
many of the main features of the Heisenberg model, such as phase transition at its critical
point, correlation length for different phases, and so forth. The advantage is, of course,
that we can explore these features through analytical expressions.

The Hamiltonian we will explore in detail contains a xx spin-spin interaction and a
z component modeling the presence of an external magnetic field. It is of the following
form:

H =
N−1∑
j=1

Jx
j σ

x
j σ

x
j+1 +

N∑
j=1

hzjσ
z
j . (2.31)

The model was first introduced by De Gennes, Tokunaga, and Matsubara [18] in
the description of order-disorder ferroelectrics with tunneling effects, such as KH2PO4.
In such materials, protons are in the double double-well potential of O− H−O bonds.
In Eq. (2.31) the xx-interaction represents the tunneling effect for a proton between
two potential minima, while the z-term represents the proton-proton interaction. The
model has also found applicability in studying materials with singlet crystal field ground
states [19]. Most importantly for us, just as the Heisenberg model, it has been thoroughly
explored through the usage of DMRG and TEBD, which will be our main focus in Chap. 3,
and has become a classical playground to test numerical methods for many-body systems
[20]

In the following subsections, we will explore an analytical solution for the uniform
Ising model. We will derive the expressions for the eigenvalues and eigenstates of the
model and in Chap. 5 compare them with results from numerical simulations.

2.4.1 Jordan Wigner Transformation

We do not proceed directly with the solution for the Ising field Model, as we need to
introduce an important concept first. As we have already said, the Hilbert space of a
spin-1

2
system is two-dimensional. We can then ask ourselves the question: Are spins

bosons, fermions, or neither? The answer to this question will lead us to the Jordan-
Wigner transformation. This transformation gives us a relation between the three types
of particles and is essential in deriving the energies and eigenstates of the Ising model.

Let us first explore the case of bosons. We define the creation b̂† and annihilation b̂
operators for bosonic particles. The physical interpretation of these operators is similar
to that of the raising and lowering operators σ+ and σ−. In the description of a single
boson, for example, in a quantum harmonic oscillator, when b̂† acts on the state vector, we
interpret it as adding quanta of energy to the system, and vice-versa – b̂ removes quanta of
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energy. However, in the more general case of a composite system, the creation operator,
then b̂† (with j specifying the lattice site), acts exactly as the name implies. It creates a
particle in the j-th site, and the annihilation operator removes a particle from the j-th
site. The bosonic operators have the standard commutation relation

[
b̂, b̂†

]
= 1. Using

these operators and given a vacuum state |0⟩ one can generate an infinite-dimensional
Hilbert space with the following states in it:

1√
n
(b̂†)n |0⟩ = |n⟩ , where n = 0, 1, 2....∞. (2.32)

The sharp difference between bosons and spin-1
2

particles is thus evident: bosons live
in an infinitely dimensional Hilbert space and spin-1

2
particles live in a two-dimensional

Hilbert space. In order to juxtapose the two, we need to impose the condition (b̂†j)
2 |0⟩ =

|0⟩, which can be interpreted as adding an infinite repulsion term to the Hamiltonian on
the j-th site. We can then mimic the space of spins through these so-called "hard-core
bosons". We transform the Pauli matrices by imposing at each site the relations |0⟩ ↔ |↑⟩
and |1⟩ ↔ |↓⟩. Then for the spin operators, we have:

σx
j = b̂†j + b̂j, σ+

j = b̂†j,

σy
j = i(b̂†j − b̂j), σ−

j = b̂j,

σz
j = 1− 2b̂†j b̂j.

(2.33)

The new operators b̂j do not satisfy the standard commutation relations for bosonic
particles, as we have made them into hard-core boson operators. Another significant
difference is that we can now have at most a single hard-core boson at a given site.
The operators, just like spin operators, commute at different sites and have the anti
commutation relations{

b̂†j, b̂j

}
= 1,

{
b̂j, b̂j

}
= 0,

{
b̂†j, b̂

†
j

}
= 0. (2.34)

Going back to Eq. (2.10) we see that the hard-core boson operators have the same anti-
commutation relations as the spin operators; thus, this is a meaningful transformation.

We are now almost ready to introduce the Jordan-Wigner transformation. The last
things we have to introduce before that are the fermionic creation and annihilation op-
erators, ĉ†j and ĉj. We again interpret them as creating or annihilating a fermion at a
given site. We know from the Pauli exclusion principle that there can be no two fermions
with the same quantum numbers. Because of this, a given state can either be occupied
by a single fermion or non at all. Such behavior is similar to spins, where we saw that a
single spin is either in the up or the down state. It follows then that the Hilbert space
required to describe either a fermion or a spin is two-dimensional, as opposed to the
case of bosons. The difference between the two types of particles is in their commuta-
tion relations. Spins on different sites commute

[
σ+
j , σ

−
k

]
= 0 while fermions on different

sites anti-commute
{
ĉ†j, ĉj

}
= 0. Thus it is evident that spin-1

2
are not fermions. The

Jordan-Wigner transformation gives the mapping between the two.

First, we will give the transformation from fermions to hard-core bosons, and we will
then use it to go back to spins. The Jordan Wigner transformation for hard-core bosons
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is defined as:

b̂j
†
= K̂j ĉj with K̂j = e

iπ
∑j−1

j
′
=1

n
j
′
=

j−1∏
j′=1

(1− 2n̂j′ ), (2.35)

where by n̂j we mean the fermionic number operator acting on the j-th site and nj is
the eigenvalue of the number operator, i.e., the number of fermions on the site. They
are related by the equation: n̂j |nj⟩ = nj |nj⟩. In Ref. [18] it is shown in detail that the
transformation in Eq. (2.35) leads to the requirements we imposed on hard-core bosons.

Now going back to the boson spin relation, we can construct the complete Jordan-
Wigner transformation from fermions to spins by substituting Eq. (2.35) into Eq. (2.33).
Doing so, we end up with the explicit expression for the Jordan-Wigner transformation:

σx
j = K̂j(ĉ

†
j + ĉj),

σy
j = K̂j i(ĉ

†
j − ĉj), (2.36)

σz
j = 1− 2n̂j.

Equipped with this transformation, we can now proceed with solving the uniform Ising
model.

2.4.2 Uniform Ising Model

For the uniform Ising model, the interactions on different sites are of the same magnitude,
i.e., Jx

j = J and hzj = h. The Hamiltonian then is of the form:

H = J
N∑
j=1

σx
j σ

x
j+1 +

h

J
σz
j . (2.37)

We see that J can be pulled in front of the summation, and thus becomes only a scaling
parameter. The physically significant parameter is then h

J
, and all the properties of the

model are solely determined by its value.

Rewriting Eq. (2.37) in terms of fermionic operators using Eq. (2.36) we get

H = J

N∑
j=1

(ĉ†j ĉ
†
j+1 + ĉ†j ĉj+1 +H.c) +

h

J
(1− 2n̂j), (2.38)

where H.c means Hermitian conjugate, that is the next part of the expression is the
Hermitian conjugate of the first part. We notice that this expression is valid for PBC. In
the previous section we said that we will focus on systems with OBC due to them being
better suited for our numerical methods. Nevertheless in deriving the energy spectra
of the uniform Ising model we are forced to choose PBC. Let us first see why this the
case, and then give arguments why in the thermodynamical limit where N → ∞ both
conditions lead to the same result

First of all, just like in Fig. 2.4 with OBC, we can give a graphical representation of
PBC when interpreting it for quantum spin chains. From Fig. 2.5 we see that imposing
PBC on our system is equivalent to placing the particles in a ring, unlike the case of OBC
which was equivalent to placing the particles in a straight line. Another major difference
is that now the 1 and N spins interact, whereas previously, they did not.
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Figure 2.5: Graphical representation of periodic boundary conditions in a quantum spin chain.

Let us now explore both models’ translational symmetries, or the lack thereof. In the
case of OBC, if we were to translate each spin to the right or the left, the system would
not remain the same, as it would lead to the boundary spins occupying a previously
unoccupied space; thus, the system is not translationally invariant. The opposite is true
for PBC; we see that translating the system leads only to a rotation by some angle
around the center, and since the spins are placed in a circle, this does not change the
system, i.e., [use tilde, see intro!] translational symmetry is present. We now recall that
from Noether’s theorem, when a system is translationally invariant, momentum k is a
conserved quantity [21]. We thus see that for OBC momentum will not be conserved.
That is why we choose to work with PBC because to solve the model, it is essential to
introduce ĉj in momentum space, and if k is not a good quantum number, we could not
do it.

We then ask ourselves, how can we compare the results in this section with the numeri-
cal results from the next chapters if they are calculated for different boundary conditions?
The answer is quite simple; we will only be interested in the limit when N → ∞. In
this case, a system with OBC becomes translationally invariant, as it is infinite, and any
translation will again lead to the same system. Thus both for PBC and OBC the results
in the thermodynamical limit are the same, and we are left with the freedom to choose
which way we want to compute them.

As a side note, observe that the Hamiltonian does not conserve the number of fermions
[define the operator], due to the terms ĉ†j ĉ

†
j+1+ĉj+1ĉj. The conserved quantity is the parity

of the fermions. If we start with an odd number of particles, they will stay odd throughout
the system’s evolution because all pairs of creation and annihilation operators change the
number of fermions by an even number. They can either create/annihilate 2 particles
ĉ†j ĉ

†
j+1/ĉj+1ĉj or keep the amount constant ĉ†j ĉj+1, which means that parity is conserved.

Parity is important for us because it determines the possible values of the momentum k.
Without loss of generality, we will choose to work with odd parity, as the case of even
parity leads to the same results; more details on this are given in Ref. [20].

After those remarks, we now continue with the solution of the Ising model. From
Eq. (2.38) we see that we are left with the problem of diagonalising the Hamiltonian. As
we said, we achieve this by introducing the fermionic operators in momentum space, ĉ†k
and ĉk, and afterward performing the Bogoliubov transformation.

In order to first transition to momentum space we perform the Fourier transformation
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on ĉk, which is defined as follows:

ĉk =
1√
N

N∑
j=1

e−ikj ĉj,

ĉj =
1√
N

∑
k

e+ikj ĉk.

(2.39)

Our choice for the parity the system leaves us with the following values for the momentum:

K =
{
k =

2nπ

N
, where n = −N

2
+ 1, ..., 0, ...,

N

2

}
. (2.40)

If we now substitute the expression for the fermionic operators in momentum space back
in the Hamiltonian, we get the uniform Ising model in momentum space:

H = J
∑
k∈K

[
2(
h

J
− cos k)ĉ†kĉk − i sin k(ĉ†−kĉ

†
k + ĉ−kĉk)−

h

J

]
. (2.41)

Here we have omitted the intermediate calculations, as they are cumbersome and are
shown in more detail in Ref. [20]. We will note only the important properties used in the
calculations:

1

N

N∑
j=1

e−i(k−k
′
)j = δk,k′ ,

∑
k

2 cos kĉ†kĉk =
∑
k

cos k (ĉ†kĉk − ĉ†−kĉ−k),
∑
k

cos k = 0.

(2.42)
Here by δk,k′ we have abbreviated the Kronecker delta symbol.

The Hamiltonian in Eq. (2.41) is still not diagonal, and the problem with the conserva-
tion of the number of fermions is still not addressed. In order to tackle these problems we
perform a Bogoliubov transformation, that maps us from ĉk to new creation and annihila-
tion operators, γ̂k and γ̂†k. These new operators have associated with them new excitation
particles that will be conserved in the evolution of the system. The transformation in
explicit form is

γ̂k = ukĉk − i vkĉ
†
−k,

γ̂−k = ukĉ−k + i vkĉ
†
k,

(2.43)

where uk and vk are real and satisfy u2k + v2k = 1, while u−k = uk and v−k = −vk.. The
inverse transformations are given by:

ĉk = ukγ̂k − iv−kγ̂
†
−k,

ĉ−k = u−kγ̂−k − ivkγ̂
†
k.

(2.44)

To complete the transformation we need to rewrite the Hamiltonian in terms of the new
γ̂ operators. We do this by rewriting the second-order terms in Eq. (2.41), such as ĉ−kĉk.
The following are the three relations, that come from Eq. (2.43), which we need in order
to complete the transformation:

ĉ†kĉk = u2kγ̂
†
kγ̂k − ikv−kukγ̂

†
kγ̂

†
−k + iv−kukγ̂−kγ̂k + v2−kγ̂−kγ̂

†
−k,

ĉ†−kĉ
†
k = u2kγ̂

†
−kγ̂

†
k + iv−ku−kγ̂

†
kγ̂−k − ivkukγ̂kγ̂

†
k + v2kγ̂kγ̂−k,

ĉ−kĉk = u2kγ̂−kγ̂k − iv−ku−kγ̂−kγ̂
†
−k − ivkukγ̂

†
kγ̂k + v2kγ̂

†
kγ̂

†
−k.

(2.45)
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After inserting these relations in Eq. (2.41) we get a long expression representing the
Hamiltionian in terms of the new operators γ̂.

H = J
∑
k

[
2(
h

J
− cos k)(u2kγ̂

†
kγ̂k − ikv−kukγ̂

†
kγ̂

†
−k + iv−kukγ̂−kγ̂k + v2−kγ̂−kγ̂

†
−k)

−i sin k
(
u2k(γ̂

†
−kγ̂

†
k + γ̂−kγ̂k) + ikv−ku−k(γ̂

†
kγ̂−k − γ̂kγ̂

†
k)

−ivkuk(γ̂kγ̂†k − γ̂†kγ̂k) + v2k(γ̂kγ̂−k + γ̂†kγ̂
†
−k)
)
− h

J

]
. (2.46)

This form of the Hamiltonian might seem messy but it is through clever choice of the
parameters uk and vk that we will end up with a much simpler expression. What we
have to do is get rid of the terms that are non-diagonal, for example γ̂†kγ̂

†
k. To do this we

require that uk and vk be of the form:

uk = cos
θk
2
, vk = sin

θk
2
, where tan θk =

sin k

(cos k − h
J
)
. (2.47)

After substituting the parameters using their new definition, the non-diagonal terms in
the Hamiltonian will cancel out. We will thus get a Hamiltonian written in the standard
form of a harmonic oscillator for each momentum mode k:

H =
∑
k

ϵk
(
γ̂†kγ̂k − 1). (2.48)

With the energies equaling:

ϵk = 2J

√
1 +

(
h

J

)2

− 2
h

J
cos k. (2.49)

The last equation gives us an analytical expression for the spectrum of the uniform Ising
model in momentum space.

As we said in Eq. (2.48) we have a Hamiltonian of a simple harmonic oscillator with
its associated creation γ̂†k and annihilation γ̂k operators; thus the ground state of the
uniform Ising model in momentum space is given by the following equation:

γ̂k |0γ⟩ = 0, ∀k ∈ N. (2.50)

If we now wish to find the expression for the ground state energy in coordinate space
we have to measure the expectation value of the diagonalized Hamiltonian, with respect
to its ground state. After doing so we will be left with the following expression for the
true ground state energy:

E0 = −
∑
k∈K

ϵk. (2.51)

Finding the expressions for the ground state and the ground state energy completes
the solution of the uniform Ising model. We note one last thing as a conclusion. In
Fig. 2.6 (a) we see the graphical representation of the dependency of ϵ0 on the parameter
h
J
. An interesting phenomenon occurs for h

J
= 1, where ϵ0 vanishes. This means that

the energy gap ∆ between the ground state and the first excited states, in momentum
space, is 0, a common occurrence for quantum phase transitions. The point h

J
= 1 is
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Figure 2.6: (a) Ground state energy in momentum space as a function of the parameter h
J .

We see that the ϵ0 vanishes for h
J = 1. This indicates that phase transition occurs at the

critical point. (b) Ground state energy density E0/NJ in coordinate space. We see that the
behaviour of (a) and (b) is drastically different. The first has a non-analytical point at h/J = 1,
a common indicator for a quantum phase transition. Where as the energy in coordinate space is
an analytical function independent of the value of h/J , a fact which we will once again observe
in Chap. 5.

the quantum critical point for the Hamitlionian; this point signals the phase transition
of the uniform Ising model between the ordered and paramagnetic phases. In Chap. 5 we
replicate these results using numerical methods.

To recap what we did in this section, we will mention the main steps of the solution.
We first showed that spin-1

2
particles are neither bosons nor fermions; this led us to the

Jordan-Wigner transformation, which revealed a relationship between the different types
of particles. We then transformed the Hamiltonian in terms of the fermionic operators.
Afterward, we sought to diagonalize it and introduce new operators with a conserved
number of excitation particles. We did so by transitioning first to momentum space and
then to the new operators γ̂. After performing the Bogoliubov transformation, we ended
up with a Hamiltonian of a simple harmonic oscillator, with its associated creation and
annihilation operators. As a final step, we used the energy spectrum that we derived to
observe the presence of a quantum phase transition, and identify the quantum critical
point of the Ising model.
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Chapter 3

Efficient Description of Many-Body
Spin Chains

This chapter will explore algorithms that efficiently describe 1D finite lattices of quantum
particles. As we have said, these systems are of great interest to physicists but, more
often than not, are too complicated to tackle through analytical approaches. That is
why many numerical methods have been developed in the past 30 years to tackle them.
Some notable examples are Exact diagonalization of the Hamiltonian, Dynamical Mean-
field theory, Quantum Monte Carlo methods, Matrix Product States (MPS) [22, 23, 24]
and many more. To understand why we need such a wide range of numerical methods,
let us explore the general way such systems are studied. We first propose a simplified
model that is believed to faithfully reproduce the physical properties of a given system,
e.g., the Hubbard model [25] that is used to describe the transition between conduct-
ing and insulating systems or the t-J model [26] used in calculating high-temperature
superconductivity. We then must solve the proposed model and verify the results with
experimental measurements. In the previous chapter, we said that these systems have a
natural realization in materials that interest condensed matter physicists; thus, obtain-
ing experimental results is not a problem most of the time. The main issue is that most
models (with some exceptions, see Sec. 2.4) can not be analytically solved, e.g., the most
general Heisenberg model. Because of this, physicists are forced to resort to numerical
methods to verify approximate analytical theories.

From now on, we will focus on numerical methods that rely on the MPS represen-
tation of the state vector. We choose them because of their distinct advantages, which
make them stand out from other methods. Firstly, they allow us to explore systems that
are large enough to exhibit thermodynamic properties, unlike, for example, exact diago-
nalization methods, which give us precise results on smaller systems but are impractical
for larger ones. Secondly, these methods are well suited for efficiently computing local
observables, mainly because their numerical structure mimics the physical system. This
fact also makes them uniquely suited to measure entanglement entropy between different
subsystems. Another advantage is that for MPS the state vector is a crucial part of the
algorithm, as opposed to Quantum Monte Carlo methods, where one can only measure
the system’s physical properties without access to its state vector. One last thing to note
is that we will explore 1D spin chains, but MPS methods are not bound to 1D systems
nor by the description of spin-1

2
particles. In Ref. [27] it is shown that MPS methods can

be naturally extended both to 2D models and to bosonic and fermionic systems. Con-
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(c)

(b)   

... ...
(a)

Figure 3.1: a) Graphical representation of a vector v with size a a matrix M with dimensions
a, b and a composite wave function on an N -site lattice. b) Matrix multiplication of a matrix
with a vector. c) Dot product of two rank-N tensors. Structure of figure adopted from Ref. [28].

sidering all these advantages, it is evident why MPS has become a staple in the study of
composite systems.

Before we continue with the mathematical introduction of the algorithms, we will
adopt some useful notations. We label the basis on the n-th lattice site as |jn⟩. For
example, in the Heisenberg model, those states are the up |↑⟩ and down |↓⟩ eigenstates of
σz. Using this notation, we can give a general expression of the composite wave function:

|ψ⟩ =
∑

j1,j2,··· ,jn

ψj1,j2,··· ,jn |j1, j2, · · · , jn⟩ , (3.1)

where by |j1, j2, · · · , jn⟩ we have denoted |j1⟩ ⊗ |j2⟩ ⊗ · · · |jn⟩, and ψj1,j2,··· ,jn are the
coefficients of the decomposition of |ψ⟩ in this particular basis.

The next import notation which we adopt will be the graphical representation of ten-
sors, cf. Fig. 3.1. This representation will prove useful when the expressions become heavy
on indices and summations. In this graphical representation, an object is represented by
a rectangular shape. If it has an index, we represent it with a "leg" in the form of a
straight line coming out of the object. If we have summation over some indices, we con-
nect the legs representing them. An example is shown in Fig. 3.1b). Where we simply get
matrix multiplication between a matrix and a vector by connecting one of their legs. If we
were to instead represent it as an equation, we would have to write (Mv)b =

∑
aMbava,

which will be cumbersome if many tensors are involved. In Fig. 3.1c), we see how we
can represent the dot product between two N dimensional tensors. Since it is a dot
product, all indices are summed over, meaning that all legs are connected, and the final
object has no free indices. We can then conclude that a scalar is represented either by a
simple rectangle with no legs or a group of tensors in which all legs are connected. As a
whole, this representation gives a good geometrical intuition of otherwise purely algebraic
operations.

3.1 Matrix Product States (MPS)

We are now ready give the general ansatz for the representation of a state vector as a
Matrix Product States (MPS).

|ψ⟩ =
d∑

j1,...,jN

χ2∑
α2

· · ·
χN∑
αN

M [1]j1
α1α2

M [2]j2
α2α3

· · ·M [N ]jN
αNαN+1 |j1, . . . , jN⟩ , (3.2)

where all jn start from 1 and have the same upper bound d, where as αk also start from
1 but each have a specific upper bound of χn. If we now perform the summation over
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α2, . . . , αN we will get:

|ψ⟩ =
∑

j1,··· ,jn

M [1]j1M [2]j2 · · ·M [N ]jN |j1, . . . , jN⟩ . (3.3)

In this expression M [k]jn are χn × χn+1 dimensional matrices, and between each two
matrices in Eq. (3.3) we perform matrix multiplication. Every M [n]jn

αn+1αn+2 has four indices;
The first one [n] expresses that this is the set of matrices on the n-site. The second one jn,
is what we call a "physical" index. As we said, it has dimension d, which is the dimension
of the local on-site Hilbert space; for a qubit d = 2. On the other hand, the two indices
αn and αn+1 are what we call "bond" indices, we will see that their dimensions are χn

and χn+1 are connected to the entanglement entropy of the state.

A requirement we impose on this representation is for the M [N ]jN and M [1]j1 to be
vectors, meaning that the dimensions αN = α1 = 1. In this way, the long-expression of
matrices will become a 1×1 matrix, which is just a scalar. These scalars correspond to the
coefficients ψj1,j2..jn in Eq. (3.1), which means that the MPS representation is equivalent
to that in Eq. (3.1) [28].

The main strength of MPS is that we can manually set the values of χn. In fact, if we
do not impose an upper boundary on them, they will grow exponentially with the size of
the system:

max
n

χn = 2N−1. (3.4)

The number of parameters required to describe the state of the system will then also grow
exponentially. The algorithm then becomes memory inefficient, as simply writing down
the system’s state in vector form would require only 2N parameters, much less than the
parameters needed for a MPS without an upper bound of the bond dimension. Thus it
makes sense to impose a boundary for large systems, which will not allow the tensors to
grow beyond a fixed size. Doing so solves the memory problem and creates a new one.
By limiting χn we are effectively ignoring a part of the state, which would otherwise be
present in M [n]. In general, this is not something we are allowed to do, as it would mean
effectively losing information about a part of the state. In the following sections, we will
convince ourselves that this is not an issue in all states and that the entanglement entropy
of the state solely determines the upper boundary on χn. From which it will follow that
weakly entangled states require fewer parameters to describe.

In order to make the last statement clearer let us explore some special cases of a
state written in the form of a MPS. We will first explore the case of a product state. As
we know (see Sec. 2.2.1) a general product state has the following form |ψ⟩ =

∣∣ϕ[1]
〉
⊗∣∣ϕ[2]

〉
⊗, · · · ,⊗

∣∣ϕ[N ]
〉
. In this case, we can describe the system by truncating all bond

dimensions at χj = 1. Meaning that all matrices will have dimensions 1× 1, i.e., instead
of matrices, we will only need scalars to describe the MPS. In particular, M [n]jn has the
following form:

M [n]jn = ϕ
[n]
jn
, (3.5)

where the term on the left represents the jn element of the n-th local state vector. As an
example we can take the ferromagnetic state |· · · ↑↑↑ · · ·⟩, which represented as a MPS
is given by:

M [n]↑ = 1, M [n]↓ = 0 ∀n. (3.6)

The reason why we need only scalars to represent a product state is that its entanglement
is zero. Moreover, from Sec. 2.2.1 we know that when states are not entangled, all but
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one λn in the Schmidt decomposition vanish, thus requiring less parameters to describe
the state. The example of the ferromagnetic state then, shows the first sign of a relation
between λn and χn.

We now continue with some examples of non-product states. The first such state is
the Greenberger–Horne–Zeilinger (GHZ) state, widely used in Quantum information [29].
For an N -site lattice it has the following form:

|GHZ⟩ = |↓⟩⊗N + |↑⟩⊗N

√
2

. (3.7)

The GHZ state clearly has non-zero entanglement entropy, as it can not be written in
the form of Eq. (2.16). Nevertheless it is only a weakly entangled state, and because of
that the tensors required to faithfully describe the state are 2 × 2 matrices which have
the following form:

M [n]0 =

[
1√
2

0

0 0

]
, M [n]1 =

[
0 0
0 1√

2

]
. (3.8)

GHZ is also a translationally invariant state. We see this from Eq. (3.8) where M [1] =
M [2], · · · , . =M [N ], this makes the task of describing such a state significantly easier. We
will explore states with transnational symmetry more thoroughly in Chapter 4.

Let us now explore the well-known Bell states. These states are typically used as
a classic example of a maximally entangled two-qubit system. They describe a two-
particle system in which the state of each subsystem prior to measurement is unknown,
but immediately after measuring qubit one, we are confident of the state of qubit two.
Bell states are mostly known for playing a crucial role in disproving the hidden variables
hypothesis [29]. A prominent interpretation of quantum mechanics in the 20-th century
was made famous by Einstein and colleagues through the so-called "EPR paradox" [30].
In general, there are four different Bell states, but in our discussion, we will focus only
on the |Ψ+⟩ and |Ψ−⟩, as the other two are similar to GHZ and do not give different
insights. The mathematical expressions for the two states are:∣∣Ψ+

〉
=

|0⟩ ⊗ |1⟩+ |1⟩ ⊗ |0⟩√
2

,
∣∣Ψ−〉 = |0⟩ ⊗ |1⟩ − |1⟩ ⊗ |0⟩√

2
. (3.9)

The tensors M [n]jn required to describe the system 1× 2 dimensional, i.e. vectors. Going
back to Eq. (3.4) we see that the largest χn for a 2 particle system is 2. The largest
dimension of M [n]jn for the Bell states is also 2. This is because the Bell states have
maximum ent. entropy and thus require the maximum χn when describing the state.

For |Ψ+⟩ the MPS representation is given by:

M [0]0 =
1√
2

[
0
1

]
, M [0]1 =

1√
2

[
1
0

]
, M [1]0 = ± 1√

2

[
1
0

]
, M [1]1 =

1√
2

[
0
1

]
. (3.10)

The MPS for |Ψ−⟩ differs only in a single sign in M [1]0

3.2 Canonical Form

Until now, we have only talked about MPS in a very general way; mainly, we still do
not know a procedure that can transition us from a vector representation to a MPS one
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and vice versa. Before we give the general algorithm for this, we will need to prove that
the MPS representation is not unique. We will then introduce its canonical form, and
through the usage of Signle Value Decomposition (SVD) (which is thoroughly explored
in Ref. [31]) we will derive the above-mentioned procedure.

As we said the first step is to show that the representation is not unique. Let us define
an invertible matrix X with dimension χn × χn+1. If we have already written a state
|ψ⟩ as a MPS with its associated M [n]jn matrices, we can perform on it the following
transformation:

M̃ [n]jn =M [n]jnX−1, M̃ [n+1]jn+1 = XM [n+1]jn+1 . (3.11)

Such a transformation clearly changes the n and n+1 matrix, but because the X matrix
can be canceled by its neighbor X−1, the new matrices still represent the original state
|ψ⟩, thus proving that the MPS representation is not unique.

The next step is to decompose the transformed M̃ [n]jn matrix in the following way:

M̃ [n]jn = Γ̃[n]jnΛ̃[n+1], (3.12)

where we choose Λ̃[n+1] to be a diagonal matrix with dimensions χn+1×χn+1 and strictly
positive elements, and Γ̃[n] to have the same dimensions as M̃ [n]jn . Such a transformation
can always be performed, because transitioning from M̃ [n]jn to Γ̃[n]jn simply amounts to
dividing the i-th column of M̃ [n]jn by the i-th entry on the diagonal of Λ̃[n+1].

After the two transformations of Eq. (3.11) and Eq. (3.12), we substitute the new
tensors in Eq. (3.3) and perform a partial contraction. From it we get the following
expressions:

|ψ⟩ =
∑

j1,...,jN

M [1]j1 . . .M [n]jnΓ̃[n]jnΛ̃[n+1]M̃ [n+1]jn+1 . . .M [N ]jN |j1, ..., jN⟩ , (3.13)

=
∑
αn+1

Λ̃
[n+1]
α̃n+1

|α̃n+1⟩L ⊗ |α̃n+1⟩R , (3.14)

where

|α̃n+1⟩L =
∑

j1,...,jn

(M [1]j1 . . .M [n−1]jn−1Γ̃[n]jn)α̃n+1,1 |j1, ..., jn⟩ , (3.15)

|α̃n+1⟩R =
∑

jn+1,...,jN

(M̃ [n+1]jn+1 . . .M [N ]jN )1,α̃n+1 |jn+1, ..., jN⟩ . (3.16)

Equation (3.14) gives us a new representation of the state |ψ⟩. We notice that it looks
very similar to the Schmidt decomposition (Eq. (2.18)), with the only exception that in
general |α̃n+1⟩R/L are not orthonormal states.

The idea of the canonical form is to map the state |α̃n+1⟩R to the Schmidt state
|αn+1⟩R, through the right choice of X in Eq. (3.16). We then have to do two more
things: Choose the elements of Λ[n+1] to be the Schmidt values. Λα, corresponding to
the bipartition of the system with respect to the n and n + 1 site, and then find the
proper Γ[n]jn so that Eq. (3.12) is fulfilled. After these steps we see that Eq. (3.14) indeed
gives us the Schmidt decomposition of |ψ⟩ [28]. Repeating this for each site, we get the
canonical form of the MPS

|ψ⟩ =
∑

j1,...,jn

Λ[1]Γ[1]j1Λ[2]Γ[2]j2 ...Λ[N ]Γ[N ]j1Λ[N+1] |j1, ..., jn⟩ . (3.17)
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Figure 3.2: a) A MPS written in a canonical form. The diagonal matrices Λ[n] contain the
Schmidt values of the bipartition of the system with respect to the n and n + 1 site, and the
Γ tensors are of the same dimension as the M tensors. Here for clarity, we have represented
the connection with the boundary 1× 1 diagonal matrices with dotted lines to emphasize that
Λ[1] and Λ[N ] are trivial. b) A MPS written in a mixed canonical form. We see that it allows
us easily to read the Schmidt decomposition on a particular bond. Structure of figure adopted
from Ref. [28].

Here with the goal of achieving an uniform expression we have added the trivial diagonal
matrices Λ[1] = Λ[N+1] = 1 on both ends. A graphical representation is given in Fig. 3.2
b).

3.2.1 Left, Right and Mixed Canonical Forms

Overall the canonical form is a proper representation, but in practice, especially when
computing expectation values, it is more convenient to work with both left – A – and
right – B – canonical forms. We define the tensors that represent these forms in the
following way:

A[n]jn ≡ Λ[n]Γ[n]jn , B[n]jn ≡ Γ[n]jnΛ[n]. (3.18)

We say that a MPS is written in left canonical if all tensors Λ[n]Γ[n]jn are grouped and
the expression is written entirely with tensors A, and right canonical if written entirely
with tensors B. The transition from one to the other is given by the relation:

A[n] = Λ[n]B[n](Λ[n+1])−1 (3.19)

The representation we will most often use is a mixture of both. If a MPS is written
in a left canonical form up to site n and right canonical form, from the n+1 site onward,
we say that the state is in a "mixed" canonical form; a graphical representation of this
form is shown in Fig. 3.2 b).

Figure 3.3 shows the main strength of the mixed canonical form: computing the
expectation values of local observables O[n] using only local tensors. We are allowed to
do this because by construction the A and B tensors are orthonormalized [32], that is∑

j1,...,jn

∑
α1,...,αn

A[1]j1
α1α2

A
[1]j1
α1α2

. . . A[n]jn
αn−1,αn

A
[n]jn
αn−1,αn

= 1, (3.20)

∑
jn+1,...,jN

∑
αn+1,...,αN

B[n+1]jn+1
αn+1αn+2

B
[n+1]jn+1

αn+1αn+2
. . . B[N ]jN

αNαN+1
B

[N ]jN
αNαN+1

= 1, (3.21)
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Figure 3.3: Evaluating a local observable on system written in mixed canonical form requires
only local operators due to the A and B tensors being orthonormalized Eq. (3.21). Structure of
figure adopted from Ref. [28].

where A[n]jn
αn−1,αn

is the complex conjugate of A[n]jn
αn−1,αn . From Eq. (3.21) we see that the left

and right part of Fig. 3.3 sum up to unity, and thus the only parts that are left are the
local tensors Bn,Λ[n] and the observable On.

We now have a good intuition of the canonical form, but we can gain an even better
understanding if we explore the general way of converting the state vector of the 1D spin
chain to a MPS in canonical form. The steps are rather simple: We first reshape the 2N

dimensional state vector as a 2 × 2N−1 dimensional matrix Y . On it we perform SVD
which gives us 3 new tensors M,Σ and V ∗. Σ is a rectangular diagonal matrix with
strictly positive numbers; it can be shown that these numbers are, in fact, the Schmidt
values of the bipartition of the system with respect to lattice sites 1 and lattice site
2 [32]. The next step is to truncate Σ up to the the bond dimension χ2 = 2 , and then
normalise the newly truncated matrix to ensure that

∑χ2

m=1 Λ
2
m = 1. Accordingly, we

have to truncate both M and V ∗ up to their respective bond dimensions and reshape M
as a χ1 × d× χ2 dimensional tensor. Looking back at Eq. (3.15) we can now identify M
as Γ[1]. We multiply the other two matrices Σ and V ∗ together and take the result to be
the new matrix Y . We then perform the same procedure until we reach the final lattice
site; this yields |ψ⟩ written as a MPS in canonical form.

We now know how to transition from a state vector to a MPS, but in practice, we
would never need such a procedure. If we can write down the state as a 2N -dimensional
vector, we can also compute the relevant quantities without using a canonical form. The
strength of MPS is that we do not need 2N dimensional vectors to perform calculations.
By taking into account, only the terms with significant contributions, MPS effectively
require fewer parameters to describe a state and is thus more efficient than directly
writing down all components of the vector.

We conclude the section with one unaddressed question. We already know that MPS
are used in the description of many-body systems and that this description relies heavily
on the truncation process. We also saw examples of the relation between entanglement
entropy and the increase in parameters required to describe a state. Nevertheless, we still
do not have a clear idea of the exact limitations of the MPS representation. We still have
to answer the central question: Can all states of a 1D quantum spin chain be efficiently
described using MPS? The answer to the question turns out to be a resounding no! We
will explore the reasons behind it in the next section.
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Many body Hilbert space

Area law states

(a) (b)

Figure 3.4: a) Area-law states constitute only a small part of the complete many-body Hilbert
space. b) Quantum fluctuations of the ground state of a gapped Hamiltonian occur only on a
small length scale. Structure of figure adopted from Ref. [28].

3.3 Area Law of Entanglement and Quantum Correlation

The Hilbert space H of a spin-1/2 chain with N lattice sites is 2N dimensional, meaning
that to describe a state in it fully, we need an exponential amount of parameters. For
example, if we want to describe a system of N ≈ 250, it would require a number of
classical bits roughly equal to the atoms in the universe. We already know that MPS are
used to tackle such problems, but in this section, we will go into more detail on what they
utilise to achieve it. In doing so, we will also become more familiar with the potential
limitations of the representation.

We will start by stating the following fact: A general state in H exhibits a volume
law, that is, the entanglement entropy Sent of its bipartition is Sent ≈ N/2 log 2−1/2 [33].
What is important for us is that Sent grows monotonically with the number of sites. From
the examples in Sec. 3.1, we already know that a larger entanglement entropy requires
larger bond dimensions. We can then conclude that MPS will not be well suited for the
description of volume law states.

We can contrast volume law states with a specific type of states, whose entropy remains
constant after a certain threshold for N is crossed. However, before we go into more detail
about them, we will first define three essential notions from quantum many-body physics.

The first one is that of a gapped Hamiltonian. We call a Hamiltonian gapped if there
is a finite energy gap between the ground state (which could be degenerate) and the first
excited state, i.e., its energy spectrum must not be continuous. The second notion is the
local Hamiltonian. For a Hamiltonian to be local, every particle must interact only with
its k nearest neighbors. For example, the Heisenberg model is represented by a local H
for k = 1. The third notion is the correlation length ξ. It gives us a measure of the order
in the state of a system; in the case of quantum spin chains, it quantifies how much, on
average, different spins in some fixed directions co-vary with one another. Its definition
comes directly from the standard correlation function Cmn in statistical mechanics:

Cmn = ⟨OnOm⟩ − ⟨On⟩⟨Om⟩, (3.22)

where On(m) in the general case is an arbitrary operator on site n(m); for our purposes,
we will calculate Cmn using the σz

n. The correlation length appears in expressions when
attempting to describe the spatial behavior of Cnm. More precisely, if a system’s proper-
ties are defined by some parameter g (for example h/J in the transverse field Ising model)
and its value is higher than the critical value gc, for which phase transition occurs, Cmn
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Figure 3.5: A comparison between the 16 largest Schmidt values of |ψ0⟩ of the transverse field
Ising model, for h/J = 5 and those of a random volume law state. For both we have N = 10,
and we use α to label the different Schmidt values.

would have the following behavior:

Cmn ∼ exp

(
−|m− n|

ξ(g)

)
. (3.23)

From this expression, we see that ξ is, by definition, the parameter in the exponent,
which shows how fast Cmn decays. Note that we define ξ to be a dimensionless number.
We also notice that in this expression, the correlation length is given as a function of g,
which means that the interaction between the particles heavily depends on the system’s
parameter, which we will utilize later.

We now have the necessary background to explore the counterparts of volume law
states – area law states. For them, entanglement grows proportionally to the area of the
bipartition [34]. The area law is exhibited by the ground states |ψ0⟩ of gapped and local
Hamiltonians. Alternatively, more precisely, the entanglement entropy of the bipartition
of an area law state is bounded from above by:

Smax ≲ 6ξ ln (d)× ln (ξ)× 26ξ ln (d). (3.24)

The expression is taken from Ref. [34] in it ξ is the correlation length and d is the
on-site Hilbert dimension. This maximum entropy is reached for some Ncorrelation ≳ ξ,
meaning that growing the system beyond it will not increase the entanglement entropy
of |ψ⟩. Intuitively we can see why this might be the case from the following fact: ground
states contain fluctuations only within ξ [28]. Thus only particles near the cut should be
entangled. An illustration of this phenomena is shown in Fig. 3.4 b.

Area law area states are a particularly useful type of state; Unfortunately, they span
only a small part of the whole Hilbert space Fig. 3.4 a. Nevertheless, they are more than
well suited for exploring the phenomena we will focus on in this thesis, such as phase
transitions, magnetization, correlation length, entanglement entropy, and so on.

The last unaddressed question is: What is the concrete reason that area law states
are well approximated by MPS? Before we give a rigorous answer, let us first look at
Fig. 3.5, which shows us the largest 20 Schmidt values of the ground state of the uniform
Ising field model (Eq. (2.31)). We see that they decrease exponentially and that only the
first couple of values have any significant contribution. It follows then that truncating
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the state after some λα is a viable procedure. The case is not the same for volume law
states though. In Fig. 3.5, shown in red, we see that all the Schmidt values of a random
volume law state, are roughly equal to 2−N/2; thus, truncating will lead to a considerable
loss of accuracy. Meaning that for volume law states the MPS approach is not applicable.

As a side note, there is one case where the behavior of |ψ0⟩ differs substantially, and
it no longer obeys the area law. We see this change when we are at the critical point
h
J
= 1, where the state exhibits a logarithmic correctian to the are law behavior. We will

come back to this claim in Chap. 5.

Coming back to the question of why MPS works for area law state. We can now
state the claim that is of largest significance for MPS. For every ϵ > 0 we can truncate
the Schmidt decomposition of a state obeying the area law, at some χmax. Such that,
independent of the system size we will have:∣∣∣∣∣|ψ⟩ −

χmax∑
α=1

Λα |α⟩L ⊗ |α⟩R

∣∣∣∣∣ < ϵ. (3.25)

We notice that the summation term on the left-hand side is the truncated state vector,
Eq. (3.14). The equation shows us the strong relation between area law states and the
MPS representation. You can find the proof of Eq. (3.25) in Ref. [34].

3.4 Time Evolving Block Decimation (TEBD)

We are now ready to discus the first of the two major algorithms that rely on the MPS
representation - Time Evolving Block Decimation (TEBD). The goal of the TEBD algo-
rithm is to evolve the state vector of quantum spin chain. We can represent it with the
following equation:

|ψ(t)⟩ = U(t) |ψ(0)⟩ , (3.26)

where U(t) is the time evolution operator, which has two separate definitions.

For a real-time evolution, with a time-independent Hamiltonian H, it is of the form -
U(t) = exp(−itH). We can verify that this definition corresponds to real-time evolution
by plugging |ψ(t)⟩ into the Schrodinger equation (Eq. 1.1). It is then trivial to show that
Eq. (3.26) will in fact be the formal solution of the Schrodinger equation [7]. We can thus
conclude that U(t) is the operator that evolves an initial state |ψ(0)⟩, at time t = 0, to
a final state |ψ(t)⟩ at time t.

The second definition of U(t) is for imaginary time evolution - U(t) = exp(−tH).
The only difference is that a single imaginary unit in the exponent has to be removed.
Nevertheless, it turns out this is a significant change. In the first case, we used U(t) to
describe the time evolution of a system, but in the latter, we use it to find the ground state
|ψGS⟩ of a time-independent Hamiltonian [28]. We do this by taking the limit t → ∞,
then applying U(t) to a state vector |ψ0⟩, and finally normalising the hole state.

|ψGS⟩ = lim
t→∞

e−tH |ψ0⟩
||e−tH |ψ0⟩ ||

. (3.27)

Why this procedure yields the correct results is shown in an excellent review in Ref. [35]
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Technically TEBD can be applied in both scenarios, but in practice, it is mainly used
to study matter’s dynamical properties through real time-evolution. The reason is that
DMRG is better suited for the search of ground states and is also much easier to generalise
to two dimensions. On the other hand, imagination time evolution can not be applied
to systems with long-range interactions, which are present in two and higher dimensions,
and thus has no natural extension generalisation [36].

3.4.1 Suzuki-Trotter Decomposition

The essential component of the TEBD algorithm is the Suzuki-Trotter decomposition
[37]. It allows us to approximate the exponent of a sum of two non-commuting operators,
with two separate exponents. The second order expansion is given by:

e(X+Y )δt = eXδt/2eY δteXδt/2 +O(δt3), (3.28)

here X and Y are operators that do not commute with each other, and δt≪ 1 is a small
time-step.

In our case the way to utilise the expansion is to decompose the Hamiltonian -
H =

∑
h[n,n+1], as a sum of two non-commuting operators, both of whom are a sum

of commuting operators:

H =
∑
n odd

h[n,n+1]

︸ ︷︷ ︸
Hodd

+
∑
n odd

h[n,n+1]

︸ ︷︷ ︸
Heven

. (3.29)

The index n odd/even runs only over the odd/even numbers, thus each term in its re-
spective sum commutes with the rest. We use this to express the time evolution operator
of Hodd/even =

∑
n odd/even h

[n,n+1] as eiδtHodd/even =
∏

nodd/even e
iδth[n,n+1] , where the decom-

position is now exact, due to the commutativity of the operators in the exponent.

Combing both steps, we end up with the following approximate expression for U(δt):

U(δt) ≈
[∏
n odd

U [n,n+1](δt/2)

][ ∏
n even

U [n,n+1](δt)

][∏
n odd

U [n,n+1](δt/2)

]
. (3.30)

Each term U [n,n+1](δt) in the expression is what we call a gate. By first applying only
the even gates and then the odd ones we will simulate the time evolution of the system -
using only local two-site operators Fig. 3.6 a). TEBD’s main advantage is the locality of
the gates, because of it after each update we can truncate the new tensors, thus keeping
their bond dimensions fixed. A fact that we will elaborate more on in the next subsection.

As a final note, going back to Eq. (3.28) we see that the accuracy of the Suziki-Trotter
decomposition is proportional to O(δt3). Meaning that evolving a system with significant
time steps will lead to an increased accumulation of error. We will see how this error
affects the accuracy of TEBD in Chap. 5.

3.4.2 Unitary Update of an MPS.

We are now ready to look at the essential part of the TEBD algorithm, the one that is
responsible for the real time evolution - the Unitary updates of the MPS.
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(b)

SVD

Figure 3.6: a) In TEBD at each time step δt we express the time evolution operator U(δt) as
a product of local two-site operators. b) The process of updating the state after applying the
time evolution operator. Structure of figure adopted from Ref. [28].

They can be split into two distinct cases. The first one is when H consists of purely
local on-site operators. In it, if the state is represented in canonical form (Eq. (3.17))
each update of the MPS is given by:

Γ̃[n]jn
αnαn+1

=
d∑
j′n

U jn
j′n
Γ[n]jn
αnαn+1

. (3.31)

We notice two specifics about this update: The Λ matrices remain unchanged, meaning
that the entanglement entropy of the state is constant throughout the evolution. More-
over, the gate U jn

j′n
has purely physical indices; thus, applying it to a single Γ does not lead

to larger bond dimensions of Γ̃. The two facts are connected, and by recalling Sec. 3.3,
we can see why this is the case.

Updating a state using two-site operators is not such a straightforward procedure. To
do so we have to perform an update on two sites n and n+1 in the same time. We achieve
this by first have to rewriting the state in a basis spanned by the left Schmidt states |αn⟩L,
the two local basis vectors |jn⟩ and |jn+1⟩, and the right Schmidt states |αn+2⟩R. The
four of them form an orthonormal global basis |αn⟩L ⊗ |jn⟩ ⊗ |jn+1⟩ ⊗ |αn+2⟩R, in which
we express the state vector |ψ⟩ as:

|ψ⟩ =
∑

jn,jn+1,
αn,αn+2

Θjnjn+1
αnαn+2

|αn⟩L |jn⟩ |jn+1⟩ |αn+2⟩R , (3.32)

where Θjnjn+1
αnαn+2

are the coefficients of the wave function |ψ⟩. Looking at Fig. 3.6 b) we see
that these coefficients are given by

Θjnjn+1
αnαn+2

=
∑
αn+1

Λ[n]
αnαn

B[n]jn
αnαn+1

B[n+1]jn+1
αn+1αn+2

(3.33)
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Now rewriting the wave function in such a way allows us to apply the gate U(δt) on
to the state in a simple manner:

Θ̃jnjn+1
αnαn+2

=
∑

j′nj
′
n+1

U
jnjn+1

j′nj
′
n+1

Θ
j
′
nj

′
n+1

αnαn+2 (3.34)

Θ̃ now represents the updated state of the |ψ⟩. The only problems is that now |ψ⟩ is not
written in canonical form. To again transition to it we need to extract the new tensors
B̃[n] and B̃[n+1] form Θ̃. In order for us to do so we reshape Θ̃ in to a dχn × dχn+2

dimensional matrix. Since we are already familiar with the relation between SVD and
the canonical form of a MPS, it is then natural to decompose Θ̃ using SVD so as to
preserve the canonical form of the state. Doing so we gives us the following result:

Θ̃jnαnjn+1αn+2 =
∑
αn+1

Ã
[n]
jnαn;αn+1

Λ̃[n+1]
αn+1αn+1

B̃
[n+1]
αn+1jn+1;αn+2

, (3.35)

where Ã[n], Λ̃[n+1] and B̃[n+1] are the new left and right matrices on the (n, n+1)-th site.
In the above expression we use the notation αn+1jn+1;αn+2 to emphasize that the tensor
has 2 indices one with dimensions αn+1jn+1, and one with αn+2, adding up to a combined
number of αn+1 × jn+1 × αn+2 elements.

As a last step we need to reshape Ã[n] and B̃[n+1] back to 3 dimensional tensors, and
recover their canonical forms. In order to do we need to take in to account the transition
from left to right canonical representation, give in Eq. (3.19).

B̃[n]jn
αnαn+1

= Λ[n]
αnαn

Ã
[n]
jnαn;αn+1

(Λ[n]
αn+1αn+1

)−1 B̃[n+1]jn+1
αn+1αn+2

= B̃
[n+1]
αn+1jn+1;αn+2

(3.36)

Naively we can say that this transition concludes the algorithm. However, there is one
last problem that we have to tackle. After all the steps we performed the bond dimensions
of the new tensors have increased two-fold [28], that is χnew = dχold (where for spins
d = 2). As a result, the amount of information required to describe the state has also
grown, and by repeatedly applying the algorithm it will continue to grow exponentially.
We tackle this by truncating both tensors up to some χmax right after we have extract
them through SVD. Essentially what this does is approximate the state using only the
most relevant parts of its decomposition. However, due to the reduction of the tensors,
the norm of the state will be reduced. That is why we are forced to normalise it by hand
to keep the norm equal to unity at each iteration. This can be achieved by dividing the

tensors with the normalisation factor N =

√∑
αn,jn,jn+1,αn+2

∣∣∣Θjnjn+1
αnαn+1

∣∣∣2.
As a concluding remark, we note that, in most cases, the entanglement entropy of

a state increases with each step of the algorithm, thus making our approximation more
and more inaccurate. That is why in longer periods of time specifically when the time
steps are of the order O(exp(N) [27], the TEBD algorithm no longer gives us a valid
approximation of the state. Which is a limiting factor in the applicability of TEBD in
some scenarios [3]. In Sec. 5.1.3 we will see through numerical simulations the relation
between the amount steps we perform and the subsequent loss of accuracy. Let us note
that this behaviour is in contrast to that the DMRG algorithm, where each following step
makes the approximation even more accurate.
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Figure 3.7: A general global operator expressed as a MPO. Structure of figure adopted from
Ref. [28].

3.5 Matrix Product Operators

In the previous sections, we explored the MPS representation of state vectors and their
time evolution. Nevertheless, we still do not have a way of measuring expectation values
of global observables, which are an essential element of Quantum mechanics. To put
it more precisely, we lack an extension of MPS to the space of operators. Such an
extension is given by Matrix Product Operators (MPO). Through them, we can measure
the expectation values of both local and global observables. And as we will see, they also
play a crucial part in the DMRG algorithm introduced in the next section.

The general anzats for a MPO is:

O =
d∑

j1,...,jN

d∑
j
′
1,...,j

′
N

vLW [1]j1j
′
1W [2]j2j

′
2 . . .W [N ]jN j

′
NvR |j1, . . . , jN⟩ ⟨j

′

1, . . . , j
′

N |. (3.37)

Here W [n]jnj
′
n are D×D dimensional matrices |jn⟩ and |j ′n⟩ are the local basis vectors on

site n. As typical we look at the case of OBC, where the boundaries of the expression,
vR and vL, are D dimensional vectors. Between all tensors in Eq. (3.37) we perform
matrix multiplication, which similar to MPS means that the hole expression in front
of |j1, . . . , jN⟩ ⟨j ′1, . . . , j

′
N | ends up being a scalar. In Fig. 3.7 we can see a graphical

representation of a global operator O written as a MPO.

The main strength of MPO is that they allow us to represent exactly any local Hamil-
tonian, using a relatively small matrix dimension D. Their structure is also very similar
to that of MPS, as both are represented by a list of tensors at each site. Because of that,
computing expectation values using the two representations together is highly efficient,
and we will often utilize it from now on. More information on the properties of MPO is
given in Ref. [32].

We will now present the general way to construct the nearest neighbor Hamiltonian
as an MPO, and then continue with a concrete example. Let us start with the simplest
case, that of a 1-site local Hamiltonian H =

∑
m h

α
mσ

α
m, where α can be either x, y or z.

Written as an MPO H is represented through the W [n]jnj
′
n matrices, which in this case

have the following form:

W [k] =

[
I hαkσ

α
k

0 I

]
. (3.38)

Each entry in W [k] is an operator acting only on the k-th site. The matrix W [k] for all
local Hamiltonians turns out to be upper triangular.

The next step is to add a nearest neighbour term to the Hamiltonian:
∑

k J
α
k σ

α
kσ

α
k+1.
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This increases the required dimension for W [k] by 1, and leads to

W [k] =

I σα
k hαk

0 0 Jα
k σ

α
k+1

0 0 I

 . (3.39)

The extension to additional nearest neighbour terms is clear; we increase the dimension
of W [k] by one, we then add the first operator to the 0-th row and the second operator to
the last column. In both cases vR and vL are D-dimensional vectors which are defined as

vL = (1, 0, . . . , 0, 0), vR = (1, 0, . . . , 0, 0)T . (3.40)

We will conclude the section with a concrete example for the MPO representation and
an additional remark regarding the algorithm for its construction. To do this, we will
take a look at the mixed-field Ising model

H =
N−1∑
k=1

Jx
kσ

x
kσ

x
k+1 +

N∑
k=1

hzkσ
z
j + hxkσ

x
k . (3.41)

This model is very similar to its transverse counterpart (Eq. (2.31)), but with an addition
magnetic field in the x-direction

∑
j h

x
kσ

x
k . Because it includes only a single nearest

neighbour interaction we ask ourselves could we directly apply Eq. (3.39) or does the
presence of a second local term change the schematic? It turns out it does not, and with
only a slight modification of Eq. (3.39) we can get the Hamiltonian as a MPO:

W [k] =

I σx
k hzkσ

z + hxkσ
x
k

0 0 Jx
kσ

x
k

0 0 I

 . (3.42)

3.6 Density Matrix Renormalization Group (DMRG)

We are now ready to present the DMRG algorithm. Unlike TEBD, which is used to evolve
a state vector given a unitary time evolution operator, we use DMRG to variationally
optimize the MPS. More precisely DMRG is used to find the lowest-energy wavefunction
|ψmin⟩ of a Hamiltonian and its associated ground state energy ⟨ψmin|H |ψmin⟩. The
algorithm was first proposed in 1992 by Steven R. White and is until this day the most
efficient method for 1D composite systems. DMRG has gone through many variations
since its inception. In this thesis, we present only the modern version of the algorithm,
which heavily relies on MPO and MPS as opposed to the initial version proposed by
White [32].

The main idea behind the algorithm is the following: Just as in TEBD we represent
the state of the system at each step by a MPS. We then use variational algorithms to
minimize the energy of the state by optimising the tensors of each two neighbouring sites.
We do this by first computing the two-site tensor Θjnjn+1

αnαn+1
(first defined in Eq. (3.33))),

and then use it as an initial state in an iterative algorithm (e.g., Lanczos [38]) that finds
the ground state of an effective Hamiltonian Heff . After reshaping the ground state we
utilize SVD to decompose it in three tensors and update the MPS. After repeating this
procedure for all sites the state of the system converges to the ground state of H. We call
the process of going over each pair of sites from left to right n = 1, 1...N and then back
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Figure 3.8: Step by step graphical representation of the DMRG algorithm. Structure of figure
adopted from Ref. [28].

from right to left, a "sweep". In practice for the state to converge properly we might
require multiple sweeps. In general the amount of sweeps required is larger when the
energy gap above the ground state is small and the correlation length is large [28]. We
can also see an important difference to TEBD; in it we needed two layers, one for the
odd and another for the even sites. Here there is no such requirement as we are free to
go from site to site without having to skip.

We will now go over every part of the algorithm. To make the expression clearer we
will often refer to Figure 3.8 which graphically illustrates the DMRG algorithm step by
step. The first step is to calculate the two-site tensor. We will assume that the state of
the system is represented as a MPS in mixed canonical form. We then identify the Λ[n]

matrix and group it with the B[n] and B[n+1] tensors on its the right. The equation for
the two site tensor is identical to that in TEBD,

Θjnjn+1
αnαn+1

=
∑
αn

Λ[n]
αnαn

B[n],jn
αnαn+1

B[n+1],jn+1
αn+1αn+2

. (3.43)

We can use the tensor to represent the two site wave function |ψ̃⟩ in the variational space
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spanned by the orthonormal basis vectors |αn⟩ ⊗ |jn⟩ ⊗ |jn+1⟩ ⊗ |αn+2⟩, in the following
way:

|ψ̃⟩ =
∑

αn,jn,jn+1,αn+2

Θjnjn+1
αnαn+1

|αn, jn, jn+1, αn+2⟩ . (3.44)

Next, we have to compute the effective Hamiltonian. Heff can be viewed as a χ2
nd

2 ×
χ2
n+2d

2 dimensional matrix acting on the variational space. It consists of three main
components. The first two are the so called left L[n] and right R[n] environments. Each
environment has three open legs, one MPO bond index, and two bond indices from the
bra and ket MPS. We will come back to their initialisation afterward, for now, we will
assume we have already performed the required computations. As is shown in Fig. 3.8
b) after contracting the two environments with the third component – the W [k] tensors –
we get Heff .

In order to now minimize the energy E = ⟨ψ̃|Heff |ψ̃⟩ we need to find the ground state
vector of the Hamiltonian. The procedure for that turns out to be the most computa-
tionally expensive part of DMRG. We tackle this we utilising the Lanczoz variational
algorithm. Variational algorithms work best when the initial guess is close to the actual
answer. Indeed that is why we computed Θjnjn+1

αnαn+1
in the first place, so we can use it as a

starting point. We could also use direct diagonalisation algorithms, but doing so will not
take advantage of the iterative nature of DMRG. The reason is that direct diagonalisation
algorithms require the same amount of steps on the second and all subsequent sweeps.
But the two site tensor is already a good approximation of the new Heff even after a
single sweep. And using it as an initial state of a variational algorithm, will lead to a
convergence of the algorithm in only a few steps.

This update is very similar to the one we did in TEBD, where after applying the
unitary operator we again had to extract the new MPS from the two site tensor. The
procedure for this is illustrated in Fig. 3.8 c), and it is as follows: We first reshape
Θ as a χnd × χn+2d dimensional matrix and apply SVD to split it in three matrices,
which we then reshape into the tensors A[n],Λ[n+1]; and B[n]. Again when doing this we
have to be careful and avoid growth in the bond dimension χk. We ensure this does
not happen by truncating the new index αn+1. The last part of the update is to make
sure that the wave function is normalised, this is done by dividing the new tensors with

N =

√∑
αn,jn,jn+1,αn+2

∣∣∣Θjnjn+1
αnαn+1

∣∣∣2.
We now have improved guesses for the tensors at the n-site, and can move on to the

next one. When doing this we have to move the center of the MPS from the n-th to the
n + 1 site, if we are moving to the right, and to the n − 1 site if we are moving to the
left. Something we need to mention is that if we are moving to the right we know how
to construct Θ, but if we are moving to the left we will have to use A[n−1]A[n] and Λ[n+1].

The last step is to find the new environments L and R. We define the starting
environments L[1] and R[1] as:

L[1] = δα1α̃1v
L
γ1
, R[1] = δαN+1α̃N+1

vRγN+1
. (3.45)

Here the delta matrices are in fact scalars, because α1 and αN+1 take only a single value.
Obtaining the next iterations of the environments could be done by a simple recursion
rule, shown in Fig. 3.8 d). The recursion means that if at each step we update the left or
right environment, depending on the direction of the sweep, we can get all environments
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starting from L[2] up to L[N ]. One last thing to note, is that in a right sweep the update
on sites n and n + 1 does not change the left environment L[k] for k < n, and in a left
sweep the the right environments R[k] for k > n + 1 remain unchanged. Thus when
implementing DMRG it is common to keep the environments in the memory; it allows us
to reduce the required computation by changing L only in a right sweep, and R only in
a left sweep.

This concludes the chapter for finite many-body spin chains. We will come back to the
algorithms presented here in Chap. 5, where we will explore some of their applications.
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Chapter 4

Infinite Translational Invariant
Many-Body Spin Chains

We have now explored different methods to simulate finite quantum spin chains. We
also gave numerous reasons why such systems are relevant to physicists and how algo-
rithms based on MPS allow us to explore different models of magnetic materials that are
prevalent in the study of superconductivity, low-temperature heap capacitance, and many
others. Nevertheless, if we are interested in the thermodynamic properties of materials,
our current algorithms will not be sufficient. We can compute these properties only in
the thermodynamic limit as N → ∞, where MPS requires infinite parameters. Even
more, infinite systems are generally better suited to study the bulk properties of matter,
as there are no finite size boundary effects.

For these reasons, in this chapter, we will present the natural extension of MPS to
infinite systems – Infinite Matrix Product States (iMPS). We will also introduce the
infinite counterparts of TEBD and DMRG and explore how and why they differ. One
thing to note is that requiring our systems to be of infinite size imposes even more
restrictions on which states could be efficiently simulated by iMPS. We already know
that strongly entangled states are out of the reach of MPS, but there is one additional
requirement for infinite systems. As is often the case in physics, when we encounter
infinite systems, we can only describe them when symmetries are present. Through
them, we can reduce the required information in the description of a state, thus making
the computations feasible.

Let us begin with the general description of the iMPS representation. In essence, it is
very similar to what we already know from MPS; we can represent the state of the wave
function |ψ⟩ using a list of matrices M [n]jn , with the only difference that we now have an
infinite number of them. Thus |ψ⟩ represented as a iMPS is:

|ψ⟩ =
∑

...jn−1,jn,jn+1...

. . .M [n−1]jn−1M [n]jnM [n+1]jn+1 . . . |. . . jn−1, jn, jn+1 . . .⟩ . (4.1)

We can not encode all matrices M [n]jn as it would require infinite computer memory.
That is why we will describe only states that are invariant under a translation of L sites,
i.e., they are only L unique tensors M [n] and the relation M [n] =M [n+L]+L we can obtain
all the others. We call the grouping of these L different tensors into a single one, a unit
cell. A single unit cell gives us a complete description of the state, as repeating it infinite
times will yield the entire state.
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Figure 4.1: a) An iMPS with a unit cell of length L = 2. b) Expectation value of a local
observable. It contains the transfer matrix T as a repetitive structure. Structure of figure
adopted from Ref. [28].

To make these new ideas clearer let us again look at some example. First, consider
the ferromagnetic product state |. . . ↑↑↑ . . .⟩, for which L = 1 and all M [n] are equal
to a single tensor M [n] = M . We have actually already seen how its components look,
as they were introduced in Eq. (3.6). Another example is the antiferromagnetic Neel
state – |. . . ↑↓↑↓ . . .⟩, which is invariant under a translation by a multiple of L = 2 sites:
M [n] =M [n+2]. Its iMPS representation is given by:

M [2n−1]↑ =M [2n]↓ = 1 M [2n]↑ =M [2n−1]↓ = 0 (4.2)

The general representation of a state with a two-site unit cell, is shown in Fig. 4.1a).

4.1 Expectation Value of a Local Observable for an Infinite MPS

Let us now explore the first practical application of iMPS. We already know that one
of the main strengths of MPS is that they allow us to efficiently calculate expectation
values of local observables. Similarly we wish for iMPS to also be suited for the task, as
we would otherwise not be able perform measurements.

At first site it seems that in the infinite case we will need to contract an infinite number
of tensors, thus making the computation unfeasible. However, due to the translational
symmetries in the state this is not the case. Figure 4.1 b) shows the evaluation of a local
observable O[n]. In the diagram we can identify a repeating structure called the transfer
matrix T , defined as:

Tαα,γγ =
∑

j1,j2,β,β

M
[1]j1
α,β M

[1]j1

α,β
M

[2]j2
β,γ M

[2]j2

β,γ
. (4.3)

We will call the state of the system pure if the largest eigenvalue of T is unique, and mixed
if it is degenerate. These names are chosen to emphasize the correspondence between the
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notions of pure and mixed states introduced in Chap. 2. In all the following calculations
we will assume that the state is pure. Which turns out not to be a limiting factor as it
can be shown that each mixed state can be decomposed into a sum of pure ones [28].

The first step in computing the expectation value of a local operator ⟨ψ|O[n] |ψ⟩
is to renormalize the iMPS so that the largest eigenvalue of T is equal to one. We
are free to do so because the corresponding eigenvector depends on the gauge freedom
shown in Eq. (3.11) which we can use to express the iMPS into the desired canonical
form. A graphical representation of such a canonical form is shown in Fig. 4.1c), while
the algorithm for the procedure can be found in Ref. [39]. Now if we look at the case
of an iMPS in a right-canonical form we, notice the following fact: By applying the
orthonormality condition, cf. Eq. (3.21), for B[n], to the entire unit cell, we see that
δγ,γ is the right eigenvector of T , with a corresponding eigenvalue of one. While the left
eigenvector with eigenvalue one is given by (Λ

[1]
α )2δα,α. By construction we have chosen all

the other eigenvalues to have a magnitude smaller than one. We can therefore conclude
that the infinite application of T onto itself, required when computing ⟨ψ|O[n] |ψ⟩, leads
to only two tensors consisting of the left and right dominant eigenvectors of T . Meaning
that after multiplying T an infinite times with itself we are again left with only a local
network, similar to that of the finite case in Fig. 3.3.

To understand why this claim is true let us consider what happens with the eigenvalues
for which λn < 1 when N → ∞:

lim
N→∞

λNn = 0, for λn ̸= 1. (4.4)

Clearly they vanish in the thermodynamic limit. If we now utilise the well know fact from
linear algebra that each matrix is diagonal when represented in the basis spanned by its
own eigenvectors, we can rewrite the matrix T as: T = QΛQ−1. Here Λ is a diagonal
matrix with elements the eigenvalues of T , and Q is an orthogonal matrix with the i-th
eigenvector placed in its i-th row. In this diagonal representation, raising an operator
to the N -th power is a trivial operation and leads to TN = QΛNQ−1. Where ΛN can
be computed by simply raising the elements of Λ to the N -th power. It follows then
that all but one element of ΛN vanish; hence multiplying them by their corresponding
eigenvectors in Q adds no contribution to TN . The only relevant row of Q then is the
one containing the dominant eigenvector. Thus proving the claim we made.

4.2 Ground State Search: Infinite DMRG

In this section, we will describe the extension of the DMRG to infinite systems – Infinite
Density Matrix Renormalization Group (iDMRG). The goal of the two algorithms remains
the same – find the ground state of a Hamiltonian H and its associated ground state
energy. The only difference is that we apply iDMRG onto an infinite spin chain, and we
are thus forced to utilise the translation-invariance of the Hamiltonian. We do this by
looking only at the unit cell of the iMPS and optimizing it with respect to an expanding
effective Hamiltonian Heff . Which is a crucial difference from DMRG where the size of
Heff remains fixed, and we optimize every two sites separately. To better understand why
such a change is required, let us look at the algorithm step by step.

To make the description of the algorithm clearer in Fig. 4.2 we have chosen a state
with unit cell length L = 2, but we could have also applied it for any L.
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(a)

(b)

Figure 4.2: a) In iDMRG, we first initialize the environments and then perform the same update
as in DMRG for a finite system with L sites b) After each sweep we increase the size of the
system by adding L sites to each environment. Structure of figure adopted from Ref. [28].

Now the first step is to represent the Hamiltonian as a MPO, which is parametrized
by the tensors W [n], for n = 1, . . . , L. We then have to terminate the W [n] tensors at
the boundaries, using the vR and vL vectors first introduced in Eq. (3.40), to end up
with an effective Hamiltonian. We notice that the new Heff has the same structure as a
Hamiltonian of a finite system consisting of L sites. Figure 4.2 illustrates the result of
these steps, where the tensors Γ[1/2] and Λ[1/2] represent the unit cell of the iMPS.

The next step is almost identical to the one in DMRG. We use the boundary vectors
as initial Left L and Right R environments and perform a two-site update similar to the
one in Fig. 3.8. From this update we extract the optimised tensors Γ̃[1/2] and Λ̃[1/2].

Afterward, only one last step is required to complete the algorithm. What we have
done until now still has not addressed the infinite length of the spin chain. More precisely,
we are using Heff to describe the Hamiltonian of an infinite system, but for now, it seems
as if it is the same as that of a L-site chain. We circumvent this problem by redefining
the left L → L̃ and right R → R̃ environments after each sweep to include the new
optimised unit cell, its conjugate, and W [n]. The procedure is shown in Fig. 4.2 b).
By doing so, we simulate the system’s infinite size, as after each iteration, Heff now
encapsulates a larger part of the state. In theory, after performing these steps a sufficient
amount of times, iDMRG should converge to a fixed point, i.e., it will reach a state whose
energy E0 = ⟨ψ0|Heff |ψ0⟩ does not reduce with further iterations. The algorithm can
be terminated at this point as further expanding the system will not change the ground
state energy E0.

One technical comment we can make is that we focus only on the central unit cell
throughout the procedure. We use the cells added to the environment only to grow the
Hamiltonian and not as something to be stored in the memory, meaning that in iDMRG
the amount of information required to describe the state is naturally limited by the unit
cell size L.

In conclusion, we will mention a specific feature of the algorithm: What kind of energy
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should we use as a convergence criteria? If we measure the system’s total energy, we will
never reach a fixed point, as it will grow to infinity as the size of the simulated system L̃
goes to ∞. We are thus forced to measure the energy density E/L̃, where L̃ is the length
of the unit cell plus the number of sites added to the left lL and right lR environments,
i.e., L̃ = lR + L + lL. A graphic illustrating the value of E/L̃ as the size of the system
increases is shown in Fig. 5.13 (d).

4.3 Time Evolution: Infinite TEBD

We continue with the generalisation of TEBD to infinite systems - iTEBD. Compared
to iDMRG, fewer changes are required to adapt the finite version to iMPS. Another
difference is that iDMRG relies on the expansion of the environment to simulate the
infinite size of the system, whereas in iTEBD the system is infinite from the start.

Let us now go over the steps of the algorithm. We again start by assuming that
the Hamiltonian, and the state we wish to describe, are translation invariant by L sites.
The state is again represented by a unit cell of length L, written in the right canonical
form. As before we utilize the Suzuki-Trotter decomposition to obtain the time evolution
operator U [n,n+1] = eh

[n,n+1] Eq. (3.30), the only difference is that now n can be any
positive integer. We then apply the operator on to the first two tensors that make up the
unit cell - B[n] and B[n+1]. The procedure is the same as the one in Fig. 3.6, meaning that
we again end up with the two updated tensors B̃[n] and B̃[n+1]. What differs is that the
previous step does not change only the (n, n + 1)-site, but due to translation invariance
also updates the (n+mL, n+mL+ 1)-site, where m ∈ Z.

The only setback we face is that in iTEBD the unit cell has nontrivial left and right
bonds at its boundaries. Unlike MPS whose leftmost and rightmost bonds are 1 × 1
tensors. Thus, we will need to add a term to the Hamiltonian that takes this into
account. Because of the translational symmetry of the state an obvious choice is a PBC
term h[L,L+1] ≡ h[L,1] [28]. An intuitive explanation for this requirement is that there is no
particular reason for the unit cell to start with the tensor B[1], which we have arbitrarily
decided to label first. Thus adding a term that simulates PBC ensures that the unit cell
is modeled by a closed system, for which the order of the tensors does not matter.

In conclusion, let us comment on one issue with iTEBD. We see that the algorithm
effectively boils down to imposing PBC onto a L site spin. However, we know that such
systems are not well described through MPS, as their canonical form (which relies on the
splitting of the state in left and right orthogonal vectors) is now not well-defined. That
is why the algorithm is prone to more significant errors. A fact that is evident when
we consider the bond dimension χmax, whose size can grow more than the Hilbert space
dimension dL of the unit cell, thus increasing the information required to describe the
state [28].
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Chapter 5

Applications

In this chapter, we apply the numerical methods which we introduced in Chapters 3 and 4
to different 1D spin-1

2
models. In the first part, we measure physical quantities of the

Transverse Field Ising model; ground state energy, entropy, magnetization, etc. We then
explore the case of finite and infinite systems, which we compare with each other and
with known analytical results (some of which we derived in Sec. 2.4.2). In the second
part we apply MPS to measure the same quantities but for models of which no analytical
solutions are known, e.g. the Mixed Field Ising (MFI) model.

Throughout this chapter, we try to understand better the practical limitations of
MPS, some of whom we saw in Sec. 3.3. We do so by measuring the relationship between
accuracy, entanglement entropy, bond dimension, time step size and so on. To conclude
our review we also explore the convergence of DMRG and iDMRG and how it is affected
by the system’s parameters.

All of the numerical simulations are realized solely through the use of the programming
language Python and its standard scientific libraries. The relevant code and a description
on how to use it are available at my Github repository [40].

5.1 Application of MPS to the Transverse Field Ising Model

In Sec. 2.4 we first Introduced the Transverse-field Ising model, and in the following
section, we found an expression for the ground state energy of a simplified version of the
model – the Uniform Ising model. We recall that the Hamiltonian had the following form:

H = J
N−1∑
j=1

σx
j σ

x
j+1 + h

N∑
j=1

σz
j . (5.1)

It is thus reasonable to start our comparison by first contrasting the numerical results
of DMRG with the analytical expression in Eq. (2.49). We will then use TEBD to explore
the time evolution of a state under the Uniform Ising model and compare the result with
an exact solver for small L.
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5.1.1 DMRG for the Uniform Ising Model

We will first explore MPS through the DMRG algorithm. In Figure 5.1 a) we see a plot
of the Ground state energy density E0/LJ for the Uniform Ising model. The results are
plotted as a function of the parameter h/J . To see how the accuracy of the algorithm
depends on the bond dimension, we have shown four different curves, three of them
representing the results of DMRG with different maximal χmax; and one in black which
shows the analytical solution, first given in Eq. (2.49).

The first thing we notice is that by increasing χmax, the accuracy of the approximation
also increases; this is most evident when looking at the "peak" centered to the right of
h/J = 1. As we will soon see, this peak is caused by an increase in the entanglement
entropy near the critical point, and it thus requires a more significant bond dimension to
accurately describe.

To better understand the accuracy of the results in Figure 5.1 b) we have plotted
the difference between the numerical simulations and the analytical solution, ∆E0/LJ .
Through it, we see some interesting features we might have missed at first glance:

First, a negative ∆E0/LJ is observed for some values of h/J ; this means that we
have found a state with lower energy than the theoretically derived ground state. We can
thus reach the wrong conclusion that our simulation has yielded an unphysical energy
minimum. Nevertheless, this is not the case. If we go back to the derivation of the
ground state energy in Sec. 2.4.2 we will see that in it, we used PBC. However, as we
stated numerous times, using MPS we simulate a finite system with OBC. Thus, we
expect a minor difference, that decreases as the system size increases, to be present for
all L ̸= ∞.

Secondly, going back to Fig. 2.6 we know that at the critical point h/J = 1, the
system undergoes a quantum phase transition. Despite that, the analytical solution for
the ground state energy does not have a feature indicating that a transition occurs. Such
a feature, though, can be found in the numerical simulations. Where we see an increased
inaccuracy for h/J > 1, which is a sharp distinction between the two phases.

The reason for the discrepancy in the two phases becomes evident when looking at
Fig 5.2. It shows us the numerical result, calculated using MPS, for the entanglement
entropy (cf. Sec. 2.2.3) of the bipartition of the system. The graph’s peak is near the
critical point h/J = 1, which we know from Sec. 3.3 to mean that a larger amount of
Schmidt values are required to describe the state, i.e., a more significant χmax. Thus if a
particular bond dimension is sufficient when h/J ≈ 0, it is not when trying to describe
a more disordered state. We also observe a second exciting phenomenon, the slope of
the graph is different in the two phases. Moving away from the critical point drastically
reduces the entanglement entropy in the ordered phase, whereas in the paramagnetic
phase we see a more gradual reduction. Thus not only is it difficult to approximate the
system’s state near the critical point, but it is also harder to do so in the paramagnetic
phase.
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Figure 5.1: (a) Ground state energy density E0/LJ of the Uniform Ising model. The energy is
plotted as a function of the parameter h/J . Four different functions are plotted 3 representing
numerical results for different χmax and one for the analytical solution. All of the data is for
a system of size L = 80 and J > 0. (b) Deviation of the numerical result from the analytical
solution ∆E0/LJ = (E0/LJ)analytical−(E0/LJ)numerical. Small bond dimensions are insufficient
for an accurate description near the critical point. Further more a change in accuracy is visible
when the system transitions into the paramagnetic phase. We also see that for higher h/J ,
the algorithm finds a lower energy state than the analytical solution. The phenomena can be
explained by recalling that Eq. (2.50) was derived for PBC, where as with MPS we simulate
a system with OBC. Meaning that for all L ̸= ∞ we expect to see some deviation in the two
results.

Figure 5.2: Numerical results for the entanglement entropy of the bipartition of the systems.
We observe a peak at h/J = 1, which we know to be the critical point for the Uniform Ising
model. Not only that but the slope of the graph differs substantially in the two phases, a fact
directly tied to the accuracy of the simulation in the two phases.
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5.1.2 Magnetization of the Uniform Ising Model

The next characteristic of the Uniform Ising Model we will measure are the Z and X
average magnetizations of the ground state, defined as

Mz/x =
1

L

L∑
i=1

⟨0|σ̂z/x
i |0⟩. (5.2)

To them we will add the antiferromagnetic order parameter Ax, which measures the
degree of antiferromagnetic order present in the state and is defined as:

Ax =
1

L

L∑
i=1

(−1)i⟨0|σ̂x
i |0⟩. (5.3)

Through them we will be able to observe a clear sign of a phase transition. But before
we present the results of the measurements, let us first consider what exactly we expect
to observe.

We already know that J is the parameter that controls how much neighboring spins
interact along the x-direction. If we now consider two spins that aim to minimise their
energy, we can easily see that a negative J should lead to them pointing in a single direc-
tion along the x-axis.h on the other hand, controls the strength of an outside magnetic
field along the z-axis. It thus tends to destroy the alignment caused by J as it aims to flip
the spins and point them in the z direction. We can thus characterise the two phases as
follows: In the ordered phase h < |J | for J < 0, we expect the ground state to consist of
spins aligned along the x-axis, that is, Mx should be non-zero. In the paramagnetic phase,
we expect the opposite, i.e., spins aligned along the z-axis and non-zero Mz. These two
scenarios, though do not cover all possibilities. The question that remains unaddressed
is what happens when J > 0? It turns out that the results for Mz are identical, but for
Mx the change in behavior is drastic due to a completely different ordering of the spins
along the x-axis. We will see how this change affects the x magnetization, and also other
phenomena, when we explore the numerical results.

The first step is to make sure that our calculations are valid by comparing them with
an exact solution. We will achieve this by utilizing the python library Quspin [41], which
is capable of calculating different quantities of a 1D spin chains. To do so it relies on direct
diagonalisation techniques, and thus unlike MPS, it does not require approximations to
reach a result. That is why it produces exact solutions, but only for systems of small size,
as direct computation for for large L is infeasible (a fact we commented on in Sec. 3.3).
Figure 5.3 illustrates the exact solution compared with MPS for a system of size L = 10.
Clearly the two are identical, and deviate only near the critical point, where we know to
expect a loss of accuracy. We are thus assured that at least for small L we are indeed
producing the correct results.

Now having successfully tested MPS for small L, we can proceed by calculating the Z
and X magnetization for larger systems. In this scenario we can verify our results, using
the work of Pierre Pfeuty [42]; who in his 1970 paper, showed that the Z magnetization
is a non-analytical function at the critical point. Thus if our simulation is accurate we
should observe the same behaviour.

Let us start with the case of positive J . Figure 5.4 (a) illustrates the Z magnetization,
of the ground state of the Ising model for systems of different length. The most noticeable
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Figure 5.3: (a) Side by side comparison of the exact solution of Mz for a system of size L = 10,
calculated through Quspin, and the results form MPS using χmax = 12. (b) A plot of the
deviation from the exact result ∆Mz = Mmps

z −M exact
z . We see that at least for small system

sizes the algorithm is capable of correctly measuring magnetization in the two phases. Once
again the hardest region to properly simulate is the one close to the critical point

feature is the gradual increase of the magnetisation as h/J goes from 0 to 3, which is
exactly the behaviour we expected. More over the speed with which it increases is reduces
in the paramagnetic phase, and it eventually caps at Mz = −1. Meaning that all the spin
are aligned in the z-direction. The second feature is that the graph goes from relatively
smooth for small L, to having a visible sharp turn at larger L. This turn can be better
observed when we zoom in on the plot, and is exactly the non analytical behaviour
predicted in [42], that characterises a system undergoing a phases transition.

In Figure 5.4 (b) we see the measurement of the antiferromagnetic order parameter.
In it, we observe a vanishing Ax in the paramagnetic phase, and a non-zero value in the
antiferromagnetic phase. What these results show us is that for h < J the spin are in an
antiparallel alignment and that the gradual increase of the outside magnetic field destroys
this alignment. In the σx eigenbasis, for h < J , we can represent the ground state of the
model as the antiferomagnetic state |· · · ↑↓↑↓ · · ·⟩x.

To conclude our numerical exploration of the magnetic properties of the Ising model,
let us present the results for the Feromagnetic case of J < 0. We start by looking at
Fig 5.5 (a), in it we see that Mz remains unchanged despite the negative sign of J . This
should not surprise us, as J does not affect the properties of the system along the z-
direction. And by flipping the sign of h we merely change the direction of the magnetic
field, which should not lead to a change of the behaviour of the system. In contrast to
this by changing J we have now ordered all the spins in a single direction, thus leading
to a drastic change in the order parameter for the phase, which now is Mx. Nevertheless,
we see that Ax and Mx have similar behaviours, both are zero in the paramagnetic phase,
both are non-analytical at the critical point and both peak for h/J = 0. Meaning that
the behaviour of the z-magnetization is again a clear indicator of a phase transition.
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Figure 5.4: (a) Z magnetisation calculated through MPS using χmax = 12. Some interesting
phenomena are visible: As L grows the function quickly converges on to a fixed dependency
for Mz. Furthermore as L increases the function becomes less smooth at the critical point
(i.e. non-analytical). In the zoomed in window we have shown the behaviour of the three
largest system near the critical point. It clearly indicates the presence of a phase transition.
(b) Antiferomagnetic order parameter Ax, again calculated for χmax = 12. We observe a non-
vanishing Ax in the antiferromagnetic phase, and a sharp drop and subsequent vanish in the
paramagnetic one. Combined with the results from a) we can infer that at the critical point, the
system transitions from an antiferromagnetic state aligned along the x-direction, to a paramagnet
aligned along the z-direction.
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Figure 5.5: (a) Z magnetisation calculated through MPS using χmax = 12. We see that the
result is the same as in the case of positive J (b) X magnetisation calculated for negative J .
We observe a clear difference between the case of a positive J . The ground state is now a
ferromagnet for h/J = 0, and gradually shifts towards a disordered state as we increase h/J .
Mx now also exhibits a non-analytical behaviour at h/J = 1, similar to that of Mz
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Figure 5.6: (a) Side by side comparison of the Z Magnetization Mz calculated with TEBD and
Quspin, for a systems size of L = 10. We see that the results are in an agreement with each
other. (b) Absolute difference of the two results. We notice that not only are the two almost
equal to each other, but also the difference between the two oscillates with time and does not
accumulate.

5.1.3 TEBD for the Uniform Ising Model

We now continue with the TEBD method. From Sec. 3.4 we recall that it allows to
simulate the time evolution of a given state |ψ⟩, under a specified Hamiltonian H. We
can then measure Mz and Sent at each step of the process, giving us a complete picture
of how these quantities evolve.

Before we explore TEBD for large systems we first have to verify our results for small
L. Once again Quspin can be used for this task. We apply it by performing a comparison
between its exact solution and the result achieved through TEBD. Such a comparison
is presented in Fig. 5.6, where dt is the small time step that we take at each interval,
the initial state is a ferromagnetic, and we evolve the state under the Hamiltonian of the
Ising model.

We see that the results match very closely, and the difference between the two oscil-
lates with time and does not accumulate. We also notice that unlike the simulations of
DMRG, here χmax is relatively high. We are able to do computations with such a large
bond dimension because TEBD lacks the ground state search of an effective Hamiltonian
(Fig. 3.8 (c)), which as we mentioned is the most computationally heavy part of the
algorithm.

After we have verified our results we can move on to larger systems. For them we would
like to explorer how the size of the time step dt affects the accuracy of the algorithm. To
do so in Fig. 5.7 we have plotted Mz and Sent as a function of time for three different time
steps - 0.05, 0.1 and 0.3, for a system of size L = 100. Just as in the previous example
the initial state is a ferromagnet, but unlike it, this time we evolve the system under the
local Hamiltonian

H =
L∑
j

hxσ̂
x
j + hjσ̂

z
j . (5.4)
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Figure 5.7: (a) A comparison of the TEBD algorithm for different time steps dt, for a system
of size L = 100, evolving under a local Hamiltonian. We see that the different simulations are
equal away from the peaks, but near them, where larger precision is required larger they lead to
inaccurate results. (b) Entanglement entropy through out the evolution. We observe that Sent
remains zero for the whole duration, an expected result since the Hamiltonian does not include
a term corresponding to a spin-spin interaction.

Choosing such a Hamiltonian allows us to observe an interesting phenomenon in the
entanglement entropy of the system. In Fig. 5.7 (b) we see that up to machine precision
a TEBD evolution under a local Hamiltonian does not alter the entanglement entropy of
the system, as there is no interaction between the neighbouring spins. Since we predicted
the behaviour of such an evolution in Sec. 3.6, we have once again verified our methods.

In Fig. 5.7 (a) we see two other phenomena that are a result of our choice of a
Hamiltonian. Firstly having both a Z and X field applied on to a feromagnet leads to
an oscillation of the spins along the xz-plane. Meaning that we oscillate between the
feromagnet state along the z-axis, and the one along the x-axis. Secondly due to the
rapid nature of the process a small dt is necessary, as large time steps fail to accurately
describe the sharp peaks of the graph.

5.2 Application of MPS to the Mixed Field Ising Model

Until now, we have applied the different methods developed in Chapter 3, only to a
relatively simple model that we showed can be analytically solved. However, MPS can
also be applied to more complicated Hamiltonians, for which no analytical solutions are
known. An example of such a model is the MFI model

H = J

N−1∑
j=1

σx
j σ

x
j+1 +

N∑
j=1

hzσ
z
j + hxσ

x
j . (5.5)

We see that the two Hamiltonians of the Transverse Field Ising and the MFI differ only
in a single outside x-magnetic field term. Nevertheless, the two models exhibit drastically
different properties. Mainly, the ground state of the MFI has for most values of hx/J and
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Figure 5.8: (a) Ground state energy density of the MFI model for negative J and a spin chain
of size L = 80. All simulations are computed for a maximal bond dimension χmax = 8. We see
that the model has to independent parameters hx and hz (In fact the parameters are hx/J and
hz/J , but here we omit J as we have set it to either one or minus one in), and that the function
is calculated at intervals of 0.1. For clarity we use colour to indicate the value of the function
and contour lines to show areas of equal magnitude. Looking at the the plot we see that similar
to the case of the Transverse Field Ising the energy is an analytical function, and no sharp peaks
are observed. (b) Ground state energy density of the MFI model for positive J and a spin chain
of size L = 80. The plots of the two energies have different values depending on the sign of J ,
which is an indicator of the more complex nature of the model. Nevertheless the functions have
one significant similarity, they are both continuous at every point.

hz/J no symmetries besides geometric ones, which leads to a lack of an extensive number
of conservation laws and a generally quantum chaotic behavior for the model [43]. These
complications are the main why reason no closed-form analytical solution of the model
has been found.

5.2.1 DMRG for the Mixed Field Ising Model

Let us now begin the numerical overview of MFI with 2 dimensional plots of the ground
state energy density, for the two different scenarios J > 0 and J < 0. Figure 5.8 illustrates
the two cases for a spin chain of size L = 80 (all results in this section are calculated for
L = 80 and χmax = 8). We see that the two independent variables of the model are hx
and hz (In fact the parameters are hx/J and hz/J , but we have omitted J as we have
set it to either one or minus one). The colour of the plot illustrates the value of variable
at any given point, and the contour lines indicate areas of equal magnitude. There are
two main conclusion that we can draw from these plots. Firstly as in Fig. 5.1 (a) the
ground state energy density is again an analytical function, for which no sharp peaks are
observed, and is thus once again not an indicator of a phase transition. Secondly in this
case due to the additional term in the Hamiltonian the results for negative and positive
J do not match. We see that the geometry of the two plots is substantially different,
which is an indicator of the more complex nature of the model.

We will continue with the model’s next important component, its entanglement en-
tropy. Figure 5.9 shows the value of Sent both for negative and positive J . In (a), we
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Figure 5.9: (a) Entanglement entropy of the bipartition of the ground state of the MFI model
for negative J and a spin chain of size L = 80. We see that the graph has no sharp features, and
the only drastic change is at the critical point of the Uniform Ising, where hx = 0 and hz = 1
(b) As opposed to the case of a negative J the antiferromagnetic case J > 0 has a much richer
geometry. The main feature we should notice is that in the bottom left corner of the graph, Sent
exhibits a sharp peaks along a whole contour, which we now from Sec. 5.1 to be one of the main
signs of a phase transition.

observe a relatively smooth function. We can identify only one sharp peak at hz = 1
and hx = 0, which we know corresponds to the critical point of the Uniform Ising model.
Other than that, for J < 0, there are no signs of a phase transition. The situation is much
more different in the case of a positive J . There we see drastically different behavior, one
which for small hx has numerous indicators of a potential quantum phase transition. To
better understand what is going on, let us zoom in on the part of the graph for which
hz = 0.1. Figure 5.10 (b) shows a presence of a very sharp peak near the point hx = 2;
if we look back at the results for the critical point of the Uniform Ising model, we know
that such behavior of Sent is typical for a quantum phase transition.

5.2.2 Magnetization of the Mixed Field Ising Model

Nevertheless, on its own Figure 5.10 (b) is not proof for a quantum phase transition. In
order to be certain about the presence of a transition, we need to see a non-analytical
behavior of an order parameter of the system. That is why in Figure 5.11 we have
presented the numerical results for the Z-magnetization of MFI. Maybe unsurprisingly,
we see that in the case of J < 0, there are only a small amount of sharp features in
the plot. Moreover, all of them are contained in the area where hx is small, i.e., when
the model is close to the Uniform Ising model, and we know to expect a quantum phase
transition.

In contrast, for J > 0, we see a plot with many sharp changes in the magnetization.
Further more if we compare Mz with Fig. 5.9 (b), we see that the two have a very similar
behavior. More precisely, the areas with big changes in the two values coincide, which is
a proof of the existence of a quantum phase transition.

In order to be certain in the last claim let us look at Figure. 5.10 (a), which is a
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Figure 5.10: (a) Mz for the MFI for a fixed value of hz = 0.1. The graph is a clear sign that
in the MFI, for a positive J , a phase transition occurs near the point hx = 2 and hz = 0.1. (b)
Entanglement entropy for the MFI model with fixed value of hz = 0.1. The peak of the graph
is again concentrated near hx = 2, which is one more sign of a phase transition.

zoomed in representation of the 2D plot, for hz = 0.1. There we see a clearly non-
analytical behavior of the order parameter Mz for hx = 2. Combined with increase in
entanglement entropy in (b) we can conclude that the system has a critical point near
hx ≈ 2 and hz ≈ 1.

Now the question that remains is: precisely how many phases does the model have
for J > 0, and what type of phases are they? Before we answer this question, let us look
at Fig. 5.11 (c). In it, we have shown the X-magnetization of the ground state. Just
like the Z-magnetization, it has a clear presence of a phase transition near hx = 2 and
hz = 0, but what is more, it also shows a non-phase transition. What we mean by that
is that in the upper left corner, the state is entirely aligned along the x-axis. However,
with the increase of the z magnetic field, it slowly loses its x magnetization. Combined
with the results in b). We can infer that the state has rotated along the xz-plane and
went from a paramagnet in the x direction to a paramagnet in the z direction.

We now shift our focus to Fig. 5.11 (c), which plays the role of a quantum phase
diagram. We see a clear boundary between an antiferromagnetic region and the rest of
the graphic. Taking the two previous plots into account, we can infer the model has two
phases; an antiferromagnetic one and a paramagnetic one. Even more, using (d), we can
identify the boundary between the two, which is now not a point but a whole curve, which
shows us that for MFI there is a whole critical curve at which phase transition occurs.

We can also identify a small amount of noise that blurs the upper boundaries of
the antiferromagnetic region. It is caused by an insufficient bond dimension and should
disappear for a more accurate simulation.

In conclusion, we saw that MPS methods apply to analytically non-solvable models
and that we can identify phase transitions that can not be derived otherwise through
them.
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Figure 5.11: (a) Z magnetization of the ground state of the MFI, in the case of a negative J .
Like the ground state energy and the entanglement entropy when J < 0, Mz again does not
have a significant presence of non-analytical behavior. Sharp peaks are present only for small
values of hx. For whom we know the model to be close to the Uniform Ising model. (b) Z
magnetization of the ground state of MFI for J > 0. We see a structure similar to the one of
Sent. In the bottom left corner, we observe a region with a high concentration of sharp changes
in the value of Mz. They are most visible on the contour line with a value of −0.60. Such a
structure is a significant indicator of a region where the ground state is in a single phase and
can transition to another phase at the border. (c) X magnetization of the ground state of MFI.
Two main features stand out from this plot. First, we see one more indicator: a phase transition
occurs at the point hx = 2 and hz = 0, there from a state with no Mx we transition to one fully
aligned along the x-axis. Secondly, we can observe one more transition, although not a phase
transition. If we follow the value of Mx from the upper left corner to the bottom right corner,
we see that it steadily goes from −1 to 0. Combining this observation with the results for the
Z magnetization, we can conclude that the outside magnetic field slowly rotates the state along
the xz-plane and eventually transitions if from being aligned along the x-axis to being aligned
along the z-axis. (d) Antiferromagnetic order parameter of the ground state of MFI. The plot
of Ax can be viewed as a phase diagram, as it shows us the regions in which the ground state is
an antiferromagnet and the points at which it transitions to a paramagnet. The two boundary
cases hz = 0 and hx = 0 correspond to two different Uniform Ising models, for which analytical
solution can be found. The in-between area has no analytical solution, and thus only through
numerical methods can we see the region’s entire boundary.
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5.2.3 TEBD for the Mixed Field Ising Model

To conclude our overview of the finite MFI, we will use TEBD to measure Mz, and Sent

of an initial state evolved under the Hamiltonian of the model.

We choose the antiferromagnetic state |· · · ↑↓↑↓ · · ·⟩x as an initial state, and then let
it evolve under the MFI Hamiltonian. We do so both for different time steps and for
different bond dimensions. We will aim to show that the algorithm has converged and
that further increases in the simulation’s parameters do not lead to different results.

Figure 5.12 (a) illustrates the time evolution of Sent for three different time steps. In it,
we see that the results start to slowly diverge as entanglement entropy and time increase.
However, the results do not diverge relative to each other in the same way. The two plots
with smaller dt remain relatively close, whereas the third has a much more noticeable
separation. Since all the simulations are performed for the same χmax we are left with
two potential causes for the accumulated error. One is the increase of Sent itself, which
generally leads to a lower accuracy for MPS and is not something we can control. The
second one is the Suziki-Troter decomposition (Eq. (3.28)). Whose error is proportional
to O(dt3), and is thus an upper bound on the precision one can achieve with a given time
step. Overall, these results show that, like all Ordinary Differential Equations (in our
case, the Schrödinger equation), one must use smaller time steps to describe the system’s
state in large time intervals accurately. Otherwise, the result eventually diverges from
the real solution. Figure 5.12 (b) shows us that Mz has a similar behaviour to that of Sent

in terms of error accumulation. Maybe surprisingly, though, it exhibits a larger relative
error than that of the entanglement entropy. A behavior that will not be replicated when
we explore the convergence with respect to χmax.

Through the results from (a) and (b) we convinced ourselves that the magnitude of dt
has a significant effect on TEBD. But from the previous results for DMRG we know that
the bond dimension also plays a crucial role in the accuracy of any MPS based algorithm.
We can then ask ourselves how important is it in TEBD, and which source of error, the
one from dt or the one from χmax, is more prominent? For example could it be that
bond dimension is not enough to encapsulate the complete entanglement entropy of the
system?

Figure 5.12 (c) shows us exactly that. In it we have simulated the system’s evolution
for a fixed time step dt = 0.1, and each of those simulations we performed for a different
χmax. We can make several observations from the plot.

Firstly the bond dimension in the previous simulations was clearly insufficient for the
algorithm to converge properly. Moreover, the results from the largest bond dimension
and the one used in (a) and (b) differ more than twofold, which shows us how much of
an impact the bond dimension has on the final result.

Secondly the difference between the results gradually decreases as we increase χmax

until eventually, the results for the two largest bond dimensions become almost identical.
Such a decrease is a strong indicator of convergence as it shows that the same increments
in χmax lead to smaller and smaller changes in the end result. Furthermore, we see that
this convergence strongly depends on the length of the time interval and that for shorter
times, small bond dimensions are more than sufficient.

And lastly, looking at Fig. 5.12 (d) we see an interesting phenomenon. Unlike Sent, for
which even the largest two bond dimensions did not perfectly coincide when measuring
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Figure 5.12: (a) Sent for the time evolution of the x antiferromagnet under the MFI Hamiltonian,
for three different time steps. The parameters of the simulation are L = 100, χmax = 20, J = 1,
hx = 0.5 and hz = 0.5. We see that the different approximations start to diverge after a long
enough interval of time. We owe this to the Suziki-Trotter decomposition, whose error (propor-
tional to O(dt3)) accumulates through time and leads to different results depending on the time
step. Meaning that higher precision is required to simulate longer time intervals accurately. (b)
The plot for Mz shows similar features to that of Sent. One interesting thing to notice is that
the relative error caused by the magnitude of the time step is higher in this case. A feature
not replicated when we explore the convergence in respect to the bond dimension. (c) Sent
for the time evolution of the x antiferromagnet under the MFI Hamiltonian, for different bond
dimensions, with a fixed time step dt = 0.1. The results show that the bond dimension in the
previous simulation was not enough for a proper convergence. More over the difference between
the results for χmax = 145 and χmax = 20 is more than two-fold. Nevertheless the simulation
was capable of reaching convergence. This is evident when looking at how the difference between
the results decreases as χmax grows. (d) Time evolution of Mz with the same parameters as
those of c). We see that unlike the previous case here we have properly converged for all χmax.
It follows then that Mz is less prone to errors caused by an insufficient bond dimension.
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Mz, all of the bond dimensions produce identical results. Going back to (b), we see that
the error caused by dt behaved in the exact opposite way. We can then can conclude
that χmax and dt play an equally important role in the accuracy of TEBD, and which one
of the two is more important depends on the quantity that is measured and the overall
system parameters.

5.3 Application of iMPS to Infinite Translational Invariant Sys-
tems.

We will now briefly go over some of the same measurements as in the previous two
sections, but this time for infinite systems.

We will focus on DMRG’s counterpart iDMRG. Going back to Sec. 4.2 we recall
that the two algorithms differ mainly with respect to the effective Hamiltonian that they
minimize. In the finite case, the Hamiltonian remains constant throughout the iterations,
whereas in the infinite one, we increase its size at each iteration. Another difference is
that DMRG implements OBC, unlike iDMRG, which due to its intrinsic symmetry, is
designed to work in PBC. That is why we expect the results we get for iDMRG to be
closer to the analytical solution of the Uniform Ising model than those of DMRG. Figure
5.13 (a) and (c) illustrates exactly this.

Comparing with the finite case we notice two main differences from Fig. 5.1. Firstly,
using iDMRG every simulation has converged on to the analytical solution. Independent
of the bond dimension. This result confirms that the algorithm is better suited tp measure
the properties of systems within the thermodynamic limit. We should not forget, though,
that this comes with the requirement that the ground state must have translational
symmetry, and had it not been the case iDMRG would not yield correct results.

Secondly Fig. 5.13 (b) illustrates that similar to the results for TEBD from the previ-
ous section. Despite the energies having converged properly (in TEBD the quantity was
Mz), the measurements for Sent show different results depending on the bond dimension.
In fact if we look back at Fig. 5.1, we see the exactly same behaviour; convergence for the
ground state energy, and substantially different results for Sent depending on χmax. These
results once again come to show us the relationship between entanglement entropy and
MPS-based approaches. Moreover from them we can conclude that Sent is the quantity
most prone to errors caused by an insufficient χmax, and that some functions are harder
to calculate than others.

The last thing we want to measure is how the accuracy of the algorithm change as a
function of the number of iterations n. In order to do so we define a cumulative error
function:

∆Esum/LJ =
1

LJ

∑
i

|Eanalytical(hi/J)− Emps(hi/J)|, (5.6)

where hi corresponds to the i-th value of the parameter h. For example, for i = 10 we
have h10 = 1.

Figure 5.13 illustrates the results from the measurement of ∆Esum/LJ . Looking at
them, it is evident that n significantly affects the accuracy of iDMRG. Furthermore,
the algorithm has not converged for n in the magnitude of a couple of thousands. It is
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Figure 5.13: (a) Ground state energy density ∆Esum/LJ of the Unifrom Ising model calculated
through iDMRG. All measurements except d) are performed for a fixed number of iterations of
the algorithm – n = 500. We see that all simulations converge independent of χmax. The reason
for this is that just as the analytical solution iDMRG works directly for PBC. Thus making it a
better approximation for this particular result. (b) Entanglement entropy Sent of the Unifrom
Ising model calculated through iDMRG. Unlike the ground state energy, here the simulations
have not converged to a single result. This is reminiscent of Fig. 5.12 where once again despite
the complete convergence of another quantity, the value of Sent heavily depended on the bond
dimension, and required large χmax to converge. (c) Deviation of the ground state energy from
the analytical solution, calculated through iDMRG. Comparing with the results for DMRG we
see that the reached accuracy is more than 5 time larger. The non-physical negative difference is
also now much smaller, what remains of it is caused by the finite number of iterations n = 500.
Due to this finite number the effective Hamiltonian has not entirely converged on to the real
infinite Hamiltonian. This leads to results, that seem non-physical but are actually caused by a
measurement with respect to a slightly inaccurate Hamiltonian. (d) Cumulative error ∆Esum/LJ
as a function of the Number or iterations, for χmax = 8. We see that the function continues
to decreases even after 2000 iterations. Meaning that the point at which the algorithm stops
becoming more accurate with the increase of the iterations, has not been reached.
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evident that the cumulative error continues to decrease even for n = 2000, meaning that
the algorithm’s accuracy can be further increased.
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Chapter 6

Conclusions

In this thesis, we presented an overview of the cutting-edge MPS-based algorithms de-
signed to tackle quantum many-body systems. We gave numerous reasons why such
systems interest physicists, both from a theoretical and practical standpoint. In Chap. 2
we got to know the underlying physics behind the models that MPS is designed for. We
presented the most general spin-1

2
nearest neighbor Hamiltonian (Eq. (2.30)) and then

solved one of its simplified cases. Despite its simplicity, it allowed us to analytically
observe the essential notion in our overview of quantum many-body systems – phase
transition.

Afterward, in Chap. 3 we presented the concept of MPS. We explored its building
blocks and the main mathematical apparatuses on which it relies. We then saw the reason
behind MPS inherent capability to efficiently simulate quantum many-body system, and
in Sec. 3.3 we also got to explore its main limiting factors, which are the entanglement
entropy and long-range correlation.

After getting to know the basics of the approach (such as transitioning from state
vector representation to MPS and computing local expectation values) in Sections 3.4
and 3.6 we presented the two main numerical algorithms that rely on MPS – DMRG and
TEBD. We saw that they allowed us to perform two essential tasks; Firstly, time evolu-
tion of an initial state under a given Hamiltonian, which essentially equated to solving the
Schrodinger equation of a given system – secondly, finding the ground state and ground
state energy of a specified model and computing expectation values of global observ-
ables. Subsequently, we developed the same models for the case of infinite translational
invariant spin chains, which allowed us to measure a system’s properties directly in the
thermodynamic limit.

The thesis concluded with Chap. 5 which presented original results from the appli-
cations of MPS and iMPS to both solvable and non-analytically solvable models. These
results allowed us to explore in detail the characteristics of a phase transition; non-
analytical behavior of order parameters, increase in entanglement entropy, and following
a requirement for a larger bond dimension to accurately simulate the system’s state.
The main result of the chapter was the identification of two different phases in the non-
analytically solvable MFI model. More precisely, we were able to show the presence of an
antiferromagnetic and paramagnetic phase and even find the boundary between the two.

Overall, this thesis showed the practical applicability and strengths of MPS. In fu-
ture research, the author will aim to combine the presented algorithms with the field
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of Reinforcement Learning. Cutting-edge research shows that such a combination can
be applied to the problem of quantum control of out-of-equilibrium many-body systems
[44]. Indeed the case of finite MPS has already been solved. What remains to be done
is the application of Reinforcement Learning to infinite systems,i.e., to utilize iMPS for
Quantum control of infinite systems.

Another potential field of future work is the study of the 2-dimensional equivalent
of MPS, the so-called Projected Entangled Pair States (PEPS). Through them, one can
explore much more complicated systems. Some of whom find a wide range of practical
applications in the field of 2-dimensional material science [27].

63



Bibliography

[1] D. C. Tsui, H. L. Stormer, and A. C. Gossard. Two-dimensional magneto-
transport in the extreme quantum limit. Phys. Rev. Lett., 48:1559–1562, May 1982.
doi:10.1103/PhysRevLett.48.1559.

[2] M. Heyl. Dynamical quantum phase transitions: a review. Reports on Progress in
Physics, 81(5):054001, apr 2018. doi:10.1088/1361-6633/aaaf9a.

[3] S. Matin, C.-K. Pun, H. Gould, and W. Klein. Effective ergodicity breaking
phase transition in a driven-dissipative system. Physical Review E, 101(2), feb 2020.
doi:10.1103/physreve.101.022103.

[4] A. Daley, I. Cirac, and P. Zoller. The Development of Quantum Hardware
for Quantum Computing, pages 62–76. Birkhäuser Basel, Basel, 2005. ISBN 978-3-
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