
Developing Artificial Intelligence Agents to Manipulate
Quantum Entanglement

This thesis is submitted in partial fulfillment of the requirements

for the degree of

M.Sc. in Artificial Intelligence

by

Pavel Tashev

(student ID: 26060)

Department of Computer Informatics
Faculty of Mathematics and Informatics

Sofia University

October 22, 2022

© Copyright by
PAVEL TASHEV
2022

Approved by

Thesis Supervisor: Marin Bukov, PhD

Co-advisor: Prof. Dr. Maria Nisheva

defense date: 31.10.2022 – 04.11.2022

Certificate of Originality

This is to certify that this thesis, entitled “Developing Artificial Intelligence Agents
to Manipulate Quantum Entanglement”, submitted in partial fulfillment of the re-
quirements for the degree M.Sc. in Artificial Intelligence at Sofia University, is my own
work and contains original results obtained by myself with the support and assistance of
my supervisor.

In particular, I certify that results and ideas obtained by third parties that are described,
published, or authored elsewhere, are to a sufficient extent referred to, properly cited, and
acknowledged in the thesis, in accordance with the requirements for respecting intellectual
property, and the academic ethics and standards.

I am aware that, should plagiarism or scientific misconduct be established, the Thesis
Committee reserves the right to reject this thesis, while the Committee for Academic
Ethics at the Ministry of Science and Education has the legal right to retroactively revoke
the degree conferred.

I declare that the results contained in the present thesis have not been submitted at any
other university, institute, or higher-education institution in (partial) fulfillment of the
requiements for an academic degree.

Sofia
October 22, 2022

Pavel Tashev
student ID: 26060
Faculty of Mathematics
and Informatics
Sofia University

ii

Abstract

In this work we study the problem of manipulating quantum entanglement of multi-qubit
quantum systems using deep reinforcement learning. We begin by introducing the field
of RL (Reinforcement learning) in Chap. 2. We give an overview of the most important
concepts and definitions establishing the terminology of RL. We formalise the notions of
agent and environment, and we provide a full derivation of an algorithm for learning using
trial-and-error – the PG (Policy gradient) algorithm. Different modifications allowing for
variance reduction are derived and discussed. Addressing the exploration-exploitation
dilemma we use a regularization method known as entropy regularization. A thorough
investigation regarding the usage of this method in Monte Carlo policy gradient algo-
rithms is given in App. B. Finally, an objective function unifying both variance reduction
and entropy regularization is derived. In addition to RL (Reinforcement learning) we
also discuss IL (Imitation learning) methods, focusing on the use of the algorithm BC
(Behavioural cloning). Supervised learning algorithms, such as BC, learn from a training
set of labelled examples. We discuss the need for labelled data sets and we propose to
use a classical search algorithm Beam search for generating training examples.

In Chap. 3 we introduce the field of quantum mechanics and discuss the differences
between classical an quantum computers. We define the notion of a qubit and we describe
how quantum operations are performed using quantum gates. We also show how multi-
qubit quantum systems are simulated on a classical computer and discuss the issue of
exponential growth. One of the most important properties of quantum systems – quantum
entanglement, is introduced and a procedure calculating the degree of entanglement is
given.

In Chap. 4 the problem of manipulating quantum entanglement is introduced. We give
a formal definition of a ‘disentanglement’ and we show a formula for measuring how
close a given quantum state is to a disentangled state. In this chapter we also study the
issue of finding a locally optimal gate, that would apply a maximum reduction to the
entanglement of a quantum state. We show how quantum states with a small number of
qubits (n = 2 and n = 3) are disentangled, and finally we give a formal definition of the
problem studied in this work.

A model for the given problem using the framework of RL (Reinforcement learning) is
described in Chap. 5. The task is posed as an optimization problem and the differ-
ent components in a Reinforcement learning setting – the agent and the environment,
are described in detail. In addition, a procedure for running simulations in parallel is
described.

In Chap. 6 we present the results that we obtained from training different artificial in-
telligence agents to disentangle quantum states. We give a detailed explanation of the
experimental set-up and we follow with a discussion of the results. An approach for com-

iii

bining supervised learning and reinforcement learning is proposed and the results from
its application are discussed.

Finally, in Chap. 7, we finish with a discussion about the contribution of this work to
the fields of QC (Quantum computing) and RL (Reinforcement learning), and we make
recommendations for future work on thе topic.

The code for running the experiments described in this work can be found at:
https://github.com/cacao-macao/entanglement-control.

iv

https://github.com/cacao-macao/entanglement-control

Разработване на интелигентни агенти за
манипулиране на квантово вплитане

Дипломна работа представена за частично покриване на изискванията

за образователно-квалификационна степен

магистър "Изкуствен Интелект"

от

Павел Златков Ташев

(факултетен номер: 26060)

Катедра Компютърна Информатика
Факултет по Математика и Информатика

Софийски университет „Св. Климент Охридски“

22 октомври 2022 г.

© Авторски права:
ПАВЕЛ ЗЛАТКОВ ТАШЕВ
2022

Одобрена от

ръководител:
д-р Марин Буков

консултант:
проф. д-р. Мария Нишева

дата на защитата: 31.10.2022 – 04.11.2022

Декларация за
оригиналност и автентичност

Аз, Павел Златков Ташев, студент от Факултет по Математика и Инфор-
матика на Софийски университет „Св. Климент Охридски“, декларирам, че пред-
ставената от мен за защита дипломна работа на тема: „Разработване на ин-
телигентни агенти за манипулиране на квантово вплитане”, за присъж-
дане на образователно-квалификационна степен магистър "Изкуствен Интелект"
е оригинална разработка и съдържа оригинални резултати, получени при проведе-
ни от мен научни изследвания (с подкрепата и/или съдействието на научния ми
ръководител).

Декларирам, че резултатите, които са получени, описани и/или публикувани от
други учени, са надлежно и подробно цитирани, при спазване на изискванията за
защита на авторското право и на академичната етика и стандарти.

Уведомен/а съм, че в случай на констатиране на плагиатство или недостовер-
ност на представените научни данни, Комисията по защитата е в правото си да
я отхвърли, а Комисията по академична етика към Министерство на образовани-
ето и науката е в законното си правото да анулира придобитата образователно-
квалификационна степен.

Декларирам, че настоящият труд не е представян пред други университети, ин-
ститути и други висши училища за придобиване на образователна и/или научна
степен.

София
22 октомври 2022 г.

Павел Златков Ташев
факултетен номер: 26060
Факултет по Математика
и Информатика
Софийски университет
„Св. Климент Охридски“

ii

Абстракт

В тази работа изучаваме проблема за манипулиране на квантовото вплитане на мно-
гокюбитови квантови системи с помощта на дълбоко обучение с утвърждение. За-
почваме с въвеждането на областта на RL (Reinforcement learning) в глава 2. Пра-
вим преглед на най-важните понятия и дефиниции, и установяваме терминологията
на RL. Формализираме понятията агент и среда и предоставяме извеждане на ал-
горитъм за обучение чрез метода "проба-грешка алгоритъмът PG (Policy gradient).
Изведени са и са обсъдени различни модификации, позволяващи намаляване на дис-
персията. За решаване на проблема "изследване-експлоатация"използваме метод за
регуларизация, известен като регуларизация на ентропията. Задълбочено изслед-
ване относно използването на този метод в Монте Карло градиентните алгоритми
на полицата е дадено в Прил. B. Накрая е изведена целева функция, обединяваща
както намаляването на дисперсията, така и регулирането на ентропията. В допъл-
нение към RL (Reinforcement learning), обсъждаме и методи от типа IL (Imitation
learning), като се фокусираме върху използването на алгоритъма BC (Behavioural
cloning). Алгоритмите за обучение с учител, като например BC, се обучават от набор
от анотирани примери. Обсъждаме необходимостта от анотирани данни и предлага-
ме да се използва класически алгоритъм за търсене Търсене в лъч за генериране на
примери за обучение.

В глава 3 представяме областта на квантовата механика и обсъждаме разликите
между класическите и квантовите компютри. Даваме определение на понятието qubit
и описваме как се извършват квантови операции с помощта на квантови опратори.
Показваме също как многокубитови квантови системи се симулират на класичес-
ки компютър и обсъждаме въпроса за експоненциалния растеж. Въвежда се едно
от най-важните свойства на квантовите системи - квантовото вплитане, и се дава
процедура за изчисляване на степента на вплитане.

В глава 4 е представен проблемът за манипулиране на квантовото вплитане. Дава се
формално определение на ‘разплитане’ и се показва формула за измерване на това
колко близо е дадено квантово състояние до разплетено състояние. В тази глава се
разглежда и въпросът за намиране на локално оптимален оператор, който да оси-
гурява максимално намаляване на вплитането на квантовото състояние. Показваме
как се разплитат квантови състояния с малък брой кюбити (n = 2 и n = 3) и накрая
даваме формално определение на проблема, изследван в тази работа.

Модел за дадения проблем, използващ рамката на RL (Reinforcement learning), е
описан в глава 5. Задачата е поставена като оптимизационен проблем и различните
компоненти в условията на Reinforcement learning - агентът и средата, са описани
подробно. Освен това е описана процедура за паралелно провеждане на симулации.

В глава 6 представяме резултатите, които сме получили от обучението на различни

iii

агенти с изкуствен интелект за разплитане на квантови състояния. Даваме подробно
обяснение на експерименталната постановка, а след това обсъждане на резултатите.
Предложен е подход за комбиниране на обучение с учител и обучение с утвърждение
и са обсъдени резултатите от неговото прилагане.

Накрая, в глава 7, завършваме с обсъждане на приноса на тази работа към областите
на QC (Quantum computing) и RL (Reinforcement learning) и даваме препоръки за
бъдеща работа по темата.

Кодът, с който могат да бъдат повторени експериментите от тезата, може да бъде
намерен на следния адрес:
https://github.com/cacao-macao/entanglement-control.

iv

https://github.com/cacao-macao/entanglement-control

Acknowledgments

I would like to express my gratitude to my supervisor Dr. Marin Bukov, without whom
this work would have not been possible. I have benefited greatly from his wealth of
knowledge in the fields of both Quantum Mechanics and Reinforcement Learning. And
I also had the pleasure to be introduced to the world of research. His invaluable advises,
novel ides, helpful guidance and constructive critiques helped this work and are greatly
appreciated.

I would also like to thank Prof. Maria Nisheva for the overall support during the writing
of this thesis.

Very special thanks to my teammate Stefan Petrov, who was an indispensable part of
this project. His dedication and commitment to this cause have helped me greatly in
writing this thesis.

All of the experiments provided in this work would not have been possible without the
support of the BG05M2OP001-1.001-0004 UNITE project (‘Universities for Science, In-
formatics and Technology in the eSociety’). Thank you for the provided computational
resources!

v

Contents

Title Page i

Certificate of Originality ii

Abstract iii

Заглавна страница i

Декларация за оригиналност и автентичност ii

Абстракт iii

Acknowledgments v

List of Figures xi

List of Tables xii

List of Codes xiii

List of Acronyms xiv

1 Introduction 1

1.1 The quantum spin . 1

1.2 Superposition and entanglement . 1

1.3 Controlling entanglement and current research 3

1.4 History of artificial intelligence . 3

1.5 Reinrofcement learning for optimizing combinatorial tasks 4

2 Machine learning based optimisation 6

vi

2.1 Reinforcement learning . 6

2.1.1 Agents and environments . 7

2.1.2 States, actions and rewards . 7

2.1.3 Policy and value functions . 10

2.1.4 Policy gradient . 13

2.1.5 Variance reduction . 14

2.1.6 Entropy regularization . 16

2.2 Imitation learning . 17

2.2.1 Behavioural cloning . 18

2.2.2 Direct policy learning with data aggregation 19

2.3 Search algorithms . 19

2.3.1 A* search . 21

2.3.2 Beam search . 21

3 Quantum computing prerequisites 24

3.1 Classical computers . 24

3.1.1 Bits . 24

3.1.2 Gates . 25

3.2 Quantum bits of information (qubits) . 27

3.2.1 From classical to quantum . 27

3.2.2 Observables and measurement . 28

3.2.3 The Bloch sphere . 30

3.3 Multi-qubit systems . 31

3.3.1 Hilbert spaces . 31

3.3.2 Quantum entanglement . 32

3.4 Quantum gates . 33

3.4.1 Unitary gates . 34

3.4.2 Single-qubit gates . 34

3.4.3 Multi-qubit gates . 35

3.5 Density operators . 38

3.5.1 Pure and mixed states . 38

3.5.2 The density matrix . 39

vii

3.5.3 Partial trace . 41

3.6 Quantifying quantum entanglement . 42

4 The multi-qubit system disentangling problem 44

4.1 Fully separable system . 44

4.2 Applying quantum gates . 46

4.3 Locally optimal gates . 47

4.4 Exact solutions . 50

4.4.1 Two-qubit states . 50

4.4.2 Three-qubit states . 51

4.5 The optimization problem . 52

5 Controlling quantum entanglement using deep reinforcement learning 53

5.1 Optimization using learning . 53

5.2 Reinforcement learning setup . 54

5.2.1 Simulation environment . 54

5.2.2 State space . 56

5.2.3 Action space . 56

5.2.4 Reward . 57

5.3 Parallel simulation . 57

5.4 Agent . 59

6 Artificial intelligence agents: training and results 61

6.1 Random agent . 61

6.2 Search agent . 62

6.3 Imitation learning agent . 65

6.4 Policy-gradient agent . 68

6.5 Pre-trained agent . 70

7 Outlook 75

A Hyper-parameters 77

B Entropy-based exploration for Monte-Carlo policy gradient methods 78

viii

B.1 Introduction . 78

B.2 Monte-Carlo Policy gradient . 80

B.3 Exploration with entropy regularization 82

B.3.1 Maximum entropy principle . 83

B.3.2 Derivation of Entropy-regularized policy gradient 84

B.3.3 Reducing variance . 86

B.4 Experiments and Results . 87

B.4.1 SmallGrid . 88

B.4.2 MazeGrid . 91

B.5 Conclusion . 93

B.6 Integration . 94

Bibliography 99

ix

List of Figures

1.1 The Stern-Gerlach experiment . 2

2.1 Interaction loop between agent and environment 7

2.2 Function approximation with a deep neural network 12

2.3 Behavioural cloning pipeline . 18

2.4 Data aggregation pipeline . 19

2.5 State-space tree search algorithm . 20

2.6 Beam search algorithm . 22

3.1 The Bloch sphere . 31

3.2 Quantum circuit for a 3-qubit quantum state 36

3.3 Tensor form of quantum state |ψ⟩ . 37

3.4 Tensor form of quantum state |ψ′⟩ . 37

4.1 Decomposition of a quantum system into subsystems 45

4.2 Action selection and action application 50

4.3 Solutions for 2-qubit states . 51

4.4 Solutions for 3-qubit quantum states . 52

5.1 Reinforcement learning agent training procedure 54

5.2 Comparison of parallel and sequential rollout 58

5.3 Multiple agent-environment loops in parallel 58

6.1 Random agent performance . 62

6.2 Functioning of beam search algorithm . 64

6.3 Comparison between search agent and random agent 65

6.4 Training an imitation learning agent on 5-qubit states 66

x

6.5 Imitation learning agent success rate when tested to disentangle a 5-qubit
quantum state . 67

6.6 Training a policy gradient agent on 5-qubit states 69

6.7 Performance of a policy gradient agent on 5-qubit states 70

6.8 Normalized policy entropy during imitation learning training 72

6.9 Policy gradient with pre-training . 73

6.10 Comparison between training a policy gradient agent with and without
pre-training . 74

B.1 Interaction loop between agent and environment 79

B.2 Markov Decision Process . 79

B.3 Gridworld Layouts . 88

B.4 SmallGrid policy no entropy . 89

B.5 SmallGrid policy with entropy . 89

B.6 SmallGrid returns . 90

B.7 SmallGrid policy entropy . 90

B.8 Policy Entropy . 91

B.9 MazeGrid policy no entropy . 91

B.10 MazeGrid policy with entropy . 92

B.11 MazeGrid returns . 93

B.12 MazeGrid policy entropy . 93

xi

List of Tables

6.1 Expected number of different trajectories as a function of the number of
qubits . 63

6.2 Expected time to train a policy gradient agent 71

A.1 Hyper-parameters used for training . 77

xii

List of Codes

5.1 Interface for the environment object . 55

5.2 Interface for the policy object . 59

5.3 Interface for the agent object . 60

xiii

List of Acronyms

AI Artificial intelligence 4, 5

BC Behavioural cloning iii, 18, 19, 75

DPL Direct policy learning 19

FCNN Fully-connected neural network 77

i.i.d. Independent and identically distributed 18, 19

IDA∗ Iterative-deepening A∗ search 21

IL Imitation learning iii, 6, 17, 18, 68, 77

MDP Markov decision process 9, 53, 67, 78

MDPs Markov decision processes 4

NLP Natural language processing 71

NN Neural network 77

PG Policy gradient iii, 6, 13, 16, 68–70, 77

QC Quantum computing iv

RL Reinforcement learning iii, iv, 4–9, 13, 17, 53, 54, 57, 67, 68, 75, 76

RNN Recurrent neural network 6, 67

xiv

Chapter 1

Introduction

1.1 The quantum spin

In the beginning of the last century two physicists conceived and performed an experiment
that questioned the concepts of classical mechanics and revolutionized our understand-
ings of microscopic phenomena. The experiment, conceived by Otto Stern in 1921, and
carried out by him in collaboration with Walther Gerlach in 1922, provided the first
incontrovertible evidence that individual atoms have a quantized magnetic moment.

The experiment (see. Fig 1.1) consisted of firing a narrow beam of silver atoms through
a vertical magnetic field. Since the atom as a whole carries angular momentum, when
passing through a magnetic filed it is deflected by a corresponding amount. After leaving
the magnetic field the atoms were projected on a detector screen illustrating the size of the
deflection. Given that the atoms are randomly oriented we would expect to observe the
atoms being deflected along a continuous vertical line. However, unlike classical magnets,
the atoms were all deflected either upward or downward by the same amount, and were
thus projected in two discrete points on the screen.

Building on top of the findings of Planck, Einstein, Bohr, de Broglie and many others,
it had become clear to most physicists that classical mechanics could not fully describe
the world of atoms. The correct interpretation of this result was far more subtle and a
new theory needed to be developed. Thus, in the beginning of 1925 modern quantum
mechanics was founded. The atom’s magnetism is produced by a property of the electron
called spin, which is a property of the quantum world an has no classical analog. Today
the concept of quantum spin provides an analog to the classical bit and is central for the
foundation of quantum computing.

1.2 Superposition and entanglement

Uncertainty is one of the central notions in quantum mechanics. Even if we know ev-
erything about the internal representation of a given quantum particle, we still cannot
predict with certainty the outcome of a given experiment, e.g. to measure the direction of
the spin. Instead, we can calculate a statistical distribution of the possible results. This
gives rise to an important question disturbing both physicists and philosophers. What
was the state of the particle, spin-up or spin-down, just before the measurement was

1

Figure 1.1: The Stern-Gerlach experiment. Silver atoms travelling through an inhomogeneous
magnetic field, and being deflected up or down depending on their spin; (1) furnace, (2) beam
of silver atoms, (3) inhomogeneous magnetic field, (4) classically expected result, (5) observed
result. Figure adapted from [1].

made? One proposition is that the particle was in a well-defined specific state, however
the theory of quantum mechanics could not determine the state with certainty. Some
additional information, known as hidden variables, needed to be provided for a complete
description of physical reality. Einstein and other advocates of this proposition claimed
that quantum mechanics is an incomplete theory. The other answer, which is the most
widely accepted one, known as the Copenhagen interpretation, states that the particle is
in both states simultaneously, i.e., it is in a superposition. It is the act of measurement
that collapsed the system into the state that is observed, and any other measurement
immediately after the first would yield the same result.

Another peculiar property of quantum mechanics is entanglement. When two particles are
entangled, one particle cannot be fully described without considering the other, because
they are defined by a single wave function; that is to say, they are not individual particles
but are an inseparable whole. Moreover, measuring one of the particles would collapse
the entire state. This means that we do not have to measure the other particle, its state
will already be known to us.

Using the property of entanglement, Albert Einstein, Boris Podolsky and Nathan Rosen
published a paper in 1935 [2] arguing that quantum mechanics was not a complete theory,
but had to be supplemented with additional variables addressing locality and causality.
The paper introduced a thought experiment imagining two particles that were entangled
into a single quantum state. Once separated, the two particles are still described by the
same wave function, and measuring one of the particles will instantaneously determine the
state of the second particle, no matter what the distance between them. The experiment
is cited as a paradox, because it appears to violate one of the central tenets of relativity:
transmitting information faster than the speed of light violates the principle of causality.
Einstein dubbed it ‘spooky action at a distance’ and postulated the existence of hidden

2

variables as yet unknown local properties of the system which should account for the
discrepancy.

Einstein, Podolsky and Rosen did not imply that quantum mechanics was incorrect, they
only claimed that it is an incomplete description and there is more to the whole story.
However, in 1964 a paper was published by John Bell [3] proving that any local hidden
variable theory was incompatible with quantum mechanics. Thus, if the EPR paradox was
correct, then quantum mechanics is not only incomplete, but in fact wrong. On the other
hand, if quantum mechanics is correct, then there can be no hidden variable theory. Many
experiments were performed to test Bell’s theory and all were in excellent agreement with
the predictions of quantum mechanics, thus, demonstrating that nature is fundamentally
non-deterministic. Probably the most important experimental evidence were reported by
Aspect [4], who was awarded the Nobel prize in Physics 2022 for pioneering quantum
information science.

1.3 Controlling entanglement and current research

Today, building quantum computers is quickly shaping to be the most important un-
dertaking of the 21st century. Instead of using electricity to represent a binary logical
states, or bits (0 and 1), quantum computing uses the quantum properties of particles to
represent two-level quantum mechanical systems, known as qubits. Operations on qubits
are performed using the quantum analog of logic gates – quantum gates.

Being fundamental to quantum computing, the property of entanglement and the pro-
cesses of creating and destroying it are of paramount importance to be studied. Pursuing
the creation of quantum entanglement, Kraus and Cirac showed in their paper [5] which
are the optimal quantum operations for entangling a quantum system. When applied
these operations will transition the system into a state of maximum entanglement. Re-
searching the reverse process of entanglement, Terno [6] and later Tor [7] studied the
problem of disentangling states, that is transforming a state of two subsystems into a
separable product state. Their findings show that a universal disentangling machine is
impossible and only a state-dependent machine can be designed.

In light of these findings in this work we try to design a state-dependent disentnagling
machine that is optimal in the sense of the number operations that it produces. Inspired
by Kraus and Cirac, we search for a quantum operation that would transform a system
into a state of minimum entanglement. Then, in order for a given quantum state to
be disentangled, multiple of these operations need to be applied. However, choosing
the optimal sequence, that would produce the least number of operations, is a hard
combinatorial task. Solving that task requires exploring a space exponential with respect
to the number of qubits in the system.

1.4 History of artificial intelligence

For decades researchers have been trying to design intelligent systems trying to mimic
human intelligence. The planning skills of a human simply cannot be encoded in an
algorithm. Problems such as playing chess and Go, or even driving a car, have been long
standing challenges to computers due to the sheer number of available actions that can be

3

taken. Even the most powerful super-computers cannot process all possible combinations
of actions in order to select the correct path that should be taken. Choosing an action
and planning for the impact it would have many steps down the road, was a problem too
hard for declarative algorithms and a new paradigm in programming was founded.

In the summer of 1956 John McCarthy, Marvin Minsky, Claude Shannon and Nathaniel
Rochester organised a two month workshop at Dartmouth bringing together researchers
interested in the study of intelligence. Despite not leading to any breakthroughs, this
workshop introduced the idea of AI (Artificial intelligence) to the scientific community
effectively creating a new research area in the field of computer science. At first (1969–
1986) researchers were focusing on developing expert systems, programs encoding human
knowledge capable of solving real-world problems using an algorithm known as resolu-
tion. Until the mid 80s the emphasis, was less on learning and more on representing and
encoding human knowledge, and reasoning using mathematical logic. However, building
and maintaining expert systems for complex domains was a difficult task. Systems could
not learn from experience and expert knowledge had to be continuously encoded. More-
over, in the face of uncertainty expert systems simply broke down. Around 1987 this led
to the beginning of a new era in AI. Researchers turned to probability rather than using
Boolean logic, and machine learning instead of hand-coding explicit knowledge. Algo-
rithms such as Hidden Markov models [8] and Bayesian networks [9] were developed using
probabilistic reasoning and based on rigorous mathematical theory. The most important
aspect of these algorithms was that they allowed to be trained on a large corpus of data,
thus steadily improving their performance.

The advancements in computing power and the dramatic increase of available storage
space have facilitated the creation of very large data sets. This led to the development of
learning algorithms specifically designed to take advantage of the presence of such data
sets. These algorithms, known as neural networks, were conceived back in the early stages
of AI, but it was not until enough data was available before their true capabilities were
discovered. Starting from 2011 a third revolution in the field of AI has been underway.
Neural network models of evermore complex architectures and exponentially growing
number of parameters have been introduced, and tasks that were thought to be far
beyond the reach of machines have been solved.

1.5 Reinrofcement learning for optimizing combinatorial tasks

The modern field of RL (Reinforcement learning) was conceived as a sub-field of AI in
the late 1980s. A major contribution was Richard Sutton’s work connecting three major
threads into a unified field of research. The first thread, originating in the psychology
of animal learning, was concerned with learning by trial and error. The second thread
was the mathematical field of operations research and more importantly the theory of
MDPs (Markov decision processes). The third thread was the study of temporal-difference
learning methods, exemplified by Arthur Samuel’s famous checkers playing program [10]
designed in 1952. Further, in 1989 the Q-learning algorithm, developed by Chris Watkins
[11], fully brought together the threads of optimal control and temporal-difference.

One of the most impressive early applications of RL was Gerald Tesauro’s program, TD-
Gammon [12] (1994). The program was a successor of Samuel’s checkers player and
learned to play the game of backgammon reaching the level of the world’s strongest

4

grandmasters. The algorithm required little more knowledge than the rules of the game,
and using learning from self-play managed to achieve professional level of play.

Another famous system using RL is IBM Watson [13]. Developed by a team of IBM
to play the popular TV game Jeopardy!, Watson won first prize in an exhibition match
against human champions. Although the the system was mainly a demonstration of
the advancements in the field of natural language question-answering, a sophisticated
decision-making strategy was implemented for the critical parts of the game. Except
answering questions, the rules of the game dictated that contestants sometimes had to
decide on how much money they want to bet that they will answer correctly the next
question. Whenever Watson hat to place a bet, it chose its bet by performing an elaborate
calculation maximizing its probability to win the game from the current state. In these
situations humans simply cannot match the equity and confidence estimates performed
by Watson. The effectiveness of this wagering strategy was well beyond the capabilities
of human players and was an important contributor to Watson’s impressive performance.

Probably the pinnacle of RL is the introduction of the algorithm AlphaGo [14, 15]. The
program solved a grandstanding challenge in AI mastering the ancient game of Go and
defeating the 18-time world champion Lee Sedol, winning 4 out of 5 games – a feat
that was considered by many to be decades into the future. The search space for Go
is significantly larger compared to the previous examples. There are about 250 legal
actions per move and games tend to involve close to 150 moves. These numbers make
the search space larger than the observable universe, however this is not the main factor
that makes Go difficult. The major problem is that it is extremely hard to define a good
position evaluation function, that would adequately predict the outcome of the game
given the current position. The team at DeepMind made an incredible effort combining
deep neural networks, supervised learning, Monte Calro tree search, and reinforcement
learning, and producing one of the most sophisticated AI algorithms. The remarkable
success of AlphaGo has been a driving force in the field of AI and has shined a new light
on Reinforcement learning.

As we can see, solving combinatorial problems with enormous (or even infinite) state
spaces is in fact a well studied problem. Thus, in this work we try to apply different
algorithms from the field of Artificial intelligence to solve the intractable problem of
controlling quantum entanglement.

5

Chapter 2

Machine learning based optimisation

In this chapter we discuss different learning algorithms for solving optimization problems.
In Sec. 2.1.1 we give a short description of RL (Reinforcement learning) and we introduce
the most important concepts and definitions needed to understand this work. In Sec. 2.1.3
we define what a policy is and how it can be used to make decisions. PG (Policy gradient),
the algorithm used for learning in this work, is introduced in Sec. 2.1.4, and different
variants for improvement are given in Sec. 2.1.5, 2.1.6. For a thorough review of the
matter the reader is referred to [16, 17]. In Sec. 2.2 we describe a supervised algorithm
for training agents known as IL (Imitation learning) and in Sec. 2.3 we introduce two
classical search algorithms for solving combinatorial search problems.

2.1 Reinforcement learning

The field of machine learning can broadly be divided into supervised learning, unsuper-
vised learning, and reinforcement learning. The type of learning heavily depends on the
type of data we have. Supervised learning is learning from a training set of labeled ex-
amples. Unsupervised learning is typically about finding patterns hidden in collections
of unlabelled data. Reinforcement learning is learning from data generated by an agent
acting in an environment.

In this work we focus on using RL (Reinforcement learning) and the reason for this is
twofold. On the one hand learning from data requires having large datasets of labeled
examples, which in our case is something that we do not have. To our knowledge the
problem studied in this work has always been attacked from the theoretical side, and this
is (to the best of our knowledge) the first attempt at designing a learning algorithm to
produce a solution.

On the other hand the problem at hand is sequential, but it is also inherently Marko-
vian. This means that the usual tool for sequential problems – a RNN (Recurrent neural
network), is not suitable in our case since it is known to be unable to handle Markovian
processes [18]. Thus, we will try to develop an RL algorithm for solving the problem.

6

Figure 2.1: Interaction loop between agent and environment. The figure shows the interaction
feedback loop between the agent and the environment. At every step the agent observes the
state of the environment st and takes an action at. The environment transitions into a new state
st+1 and emits a reward signal rt+1.

2.1.1 Agents and environments

Reinforcement learning is the study of agents and how they learn by trial and error. The
key components of RL are the agent and the environment. The environment is the
representation of the world that the agent lives in and interacts with. It might be a
simulation or it might be a real physical environment. The interaction of the agent with
the environment is described with a (possibly infinite) feedback loop. At every step of
the loop, the agent observes the state of the environment, and based on that observation
decides on an action to take. Every step of the loop is called a time step, and one run
of the loop from start to finish is called an episode.

When the environment is acted upon it changes its state, and also emits a reward signal
indicating how good or bad the new state is. Usually, it is assumed that the new state
of the environment depends only on the last observed state and the action taken by the
agent. This is known as a Markov property and is discussed in Sec. 2.1.2.

The goal of the agent is to maximise its total sum of rewards, called return, accumulated
throughout the interaction loop. The agent is not told which actions to take, and instead
discovers which actions are most promising by trying them out. A single action determines
the immediate reward, but it also determines the next state, and through that it affects all
subsequent rewards. As stated by Sutton & Barto in Ref. [16], these two characteristics
– trial-and-error search, and delayed reward – are the two most important distinguishing
features of reinforcement learning.

In order to describe the algorithms developed and used in this thesis, we first need to
establish the terminology used in reinforcement learning. The problem of reinforcement
learning is formalised using ideas from dynamical systems theory [19].

2.1.2 States, actions and rewards

We will start by formalising the notion of a state. As mentioned earlier, during the
agent-environment feedback loop, the agent observes the state of the environment, and
decides on its actions based on that state. All the knowledge needed to make inference
is compressed in the state.

7

Formally, a state s is a complete description of the current representation of the environ-
ment. A state is represented by a real-valued (or a complex-valued, see Sec. 3.2) vector,
matrix, or higher-order tensor. The current state s at time step t is denoted by st. For
example, in a mechanical simulation the state could consist of the positions, velocities,
and accelerations of an object along the x, y, z axes:

st =
[
xt, yt, zt, vx,t, vy,t, vz,t, ax,t, ay,t, az,t

]
.

The state space S is the set of all valid states of the environment

st ∈ S.

The actions that the agent can choose to take depend entirely on the problem we are
solving, and the capabilities of our agent. However, in some states of the environment
there may be a restriction on a given action.

An action space A(s) is the set of all valid actions in a given state of the environment.
The action a selected by the agent at time step t while in state st is at, where

at ∈ A(st).

The reward r is a signal passed from the environment to the agent. At each time step
t, the reward is a scalar that depends on the current state of the environment, the action
just taken, and the next state of the environment. More formally, the reward signal can
be expressed as the output of a reward function:

R : S ×A× S → R,
rt+1 = R(st, at, st+1).

The reward signal is used to formalise the idea of a goal. RL is based on the reward
hypothesis, stating that all goals can be described by the maximisation of an expected
cumulative reward.

The sum of rewards over all time steps of an episode is called the return. A formal
description of the return is needed, because we are going to formulate the RL problem as
an optimisation problem, where the objective we are trying to maximise is the return:

R(τ) =
T∑
t=0

rt+1. (2.1)

Here τ represents the trajectory (see Eq. (2.7)) of the agent during a full episode, and
T is the total number of time steps in that episode (T may be ∞). Note that we are
using an overloaded notation for the reward function R. However, this is the standard
notation used in most references, and it is also used in this work.

In the case of infinite agent-environment feedback loops, the return may grow indefinitely,
and thus finding an optimisation procedure might be difficult or even impossible. To solve
the problem of dealing with infinite quantities, we may add a discount factor γ to the
reward obtained at every time step. The discounted return is the sum of all rewards
obtained by the agent, but discounted by how far off in the future they were obtained:

8

R(τ) =
T∑
t=0

γtrt+1. (2.2)

Obviously, setting γ = 1, gives us back the undiscounted return.

A more general quantity is the sum of rewards received after time step t, denoted Gt:

Gt = rt+1 + rt+2 + rt+3 + · · · =
T∑
k=0

rt+k+1, (2.3)

or in case of discounted rewards:

Gt = rt+1 + γrt+2 + γ2rt+3 + · · · =
T∑
k=0

γkrt+k+1. (2.4)

Using Eqs. (2.2), (2.3) and (2.4), and setting t = 0 it can be seen that the return is equal
to G0, where

G0 = R(τ) =
T∑
t=0

γtrt+1. (2.5)

Returns at successive time steps are related to each other recursively:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · ·
= Rt+1 + γ(Rt+2 + γRt+3 + · · ·)
= Rt+1 + γGt+1.

(2.6)

As stated earlier, when the environment is acted upon, its state changes and the new
state depends only on the previous state and the action taken by the agent. Thus, the
environment in an RL problem is assumed to obey the Markov property. This assumption
allows us to rigorously formulate the reinforcement learning problem as a MDP (Markov
decision process).

An MDP is a 5-tuple {S,A,R,P , p0}, where:

• S is the state space;

• A is the action space;

• R is the reward function;

• P : S ×A× S → [0, 1] is the transition probability function;

• p0 is the initial state distribution

The transition probability function defines the dynamics of the MDP. Assuming we are in
state st and we take an action at, then P(st, at, st+1) (or P(st+1|st, at)) is the probability
of transitioning into state st+1. The term MDP is referring to the fact that the transition
function of the environment obeys the Markov property : transitions depend only on the
current state and the selected action. No prior history is relevant.

9

Running the agent-environment feedback loop from beginning to end will produce one
episode. At each time step t of that episode the agent observes the current state of
the environment st and based on that state it decides on an action at ∈ A(st). As a
consequence of taking that action the state of the environment changes to the new state
st+1 ∼ P(·|st, at), and the environment emits a reward rt+1 = R(st, at, st+1), which is
received by the agent.

This episode gives rise to a sequence of (state, action, reward) triples, and this sequence
is called a trajectory:

τ = (s0, a0, r1, s1, a1, r2, s2, a2..., sT−1, aT−1, rT , sT), (2.7)

where s0 is sampled from the distribution p0 and T is the total number of time steps.

2.1.3 Policy and value functions

During each step of the agent-environment interaction loop, the agent must choose an
action based on the current state on the environment. The rule that the agent uses
when deciding on which action to take is called a policy. Assuming the action space is
discrete (continuous action spaces are not considered in this thesis), a policy π is formally
described as a function that maps each state to a vector of probabilities. The probabilities
produced by the policy function rank each possible action by its likelihood to be selected:

π : S → [0, 1]d,

where d is the number of actions in the action space d = |A(st)|.

The quantity π(st) yields a probability distribution over the action space A(st). The
probability of choosing action at is written as π(at, st) or π(at|st). Ideally, what we want
is good actions to receive high probability and bad actions to receive low probability.
Intuitively, good actions should lead to good states, and the notion of good is defined in
terms of the future rewards that can be expected. A value function is used to estimate
the future rewards that can be expected. A value function is a function that maps each
state to an estimate of the expected return when starting in that state.

More formally, a value function under a policy π, denoted vπ(s), is the expected return
when starting in s and always taking actions suggested by the policy π:

vπ : S → R,
vπ(s) = Eπ[Gt|St = s],

where Eπ[·] denotes the expected value of a random variable given that the agent follows
policy π.

Having a value function we could compare actions by comparing the values of the states
that these actions would lead to. However, doing this requires knowing the transition
function of the environment. In case we have no access to the dynamics of the environment
we could use an action-value function. An action-value function is a function that maps
state-action pairs to an estimate of the expected return when performing that given action
in that given state.

Similarly, a more formal description is that the action-value function under a policy π,
denoted qπ(s, a), is the expected return when starting in s, taking action a, and thereafter

10

acting according to the policy π:

qπ : S ×A → R,
qπ(s, a) = Eπ[Gt|St = s, At = a].

Many times we would like to generate a trajectory by letting an agent act in the envi-
ronment under a given policy π. We will call this process policy rollout. During policy
rollout the agent acts according to a fixed policy π starting from an initial state s0 and
continuously transitioning to new states until a termination condition is reached. The
result of the policy rollout is a complete trajectory – the ordered collection of states,
actions, and rewards observed during the process.

Since we are concerned with maximising the expected return, we would like to find a
policy such that at every step the action is taken that would lead to the best next state.
Such a policy is known as an optimal policy π∗. The notions of optimal value function
and optimal action-value function can also be defined in terms of the optimal policy.
It should be noted that while there may be several optimal policies, the optimal value
function and the optimal action-value function are unique.

The optimal value function, denoted v∗(s), is the expected return when starting in s,
and acting optimally:

v∗(s) = max
π

Eπ[Gt|St = s].

The optimal action-value function, denoted q∗(s, a), is the expected return when
starting in s, taking action a, and thereafter acting optimally:

q∗(s, a) = max
π

Eπ[Gt|St = s, At = a].

There is an important connection between the optimal policy π∗ and the optimal action-
value function q∗(s, a). The optimal action from π∗(a|s), for a given state s, can be
directly obtained from the optimal action-value function q∗ by:

π∗(a|s) = argmax
a′

q∗(s, a′).

Thus, having the optimal action-value function, the optimal policy can easily be recovered.
This is useful in certain tasks where it might be easier to learn the q-function, rather than
learning directly the policy function.

Value functions satisfy a recursive relationship inherited from the relationship for the
return in Eq. (2.6). These equations are known as the Bellman optimality equations
and they state that the value of the state s is equal to the (discounted) value of the next
state s′ drawn from the transition probability distribution, plus the reward returned by
the environment:

v∗(s) = max
π

Eπ[Gt|St = s]

= max
π

Eπ[rt+1 + γGt+1|St = s]

= max
a

Es′∼P [R(s, a, s′) + γv∗(s′)],

(2.8)

11

Figure 2.2: Function approximation with a deep neural network. The function takes as input
the state of the environment st, and outputs a vector of probabilities assigned to each of the
possible actions.

q∗(s, a) = max
π

Eπ[Gt|St = s, At = a]

= max
π

Eπ[rt+1 +Gt+1|St = s, At = a]

= Es′∼P [R(s, a, s′) + γmax
a′

q∗(s′, a′)],

(2.9)

where Es′∼P [·] denotes the expected value of a random variable given that the next state
s′ is sampled from the transition probability distribution P(·|s, a).

One way to find an optimal policy is to solve the Bellman optimality equations. However,
this requires an exhaustive search. We need to look at all possible outcomes, computing
their respective probabilities of occurrence and summing their associated rewards. It is
usually not feasible to solve the Bellman optimality equations and compute the optimal
policy. In many cases there are far more states than we could ever visit, and in the
case of continuous state spaces there is an infinite number of states. In such cases the
value functions must be approximated using a parametrised function representation. This
means that the output of the function depends on a set of parameters (e.g., weights and
biases of a neural network). Function parameters will be denoted by θ, and function
approximators are written with a subscript representing the parameters of the function:

vθ(s),

qθ(s, a),

πθ(a|s).

Fig. 2.2 shows an example approximation of a policy function πθ using a deep fully-
connected neural network. The input to the neural network will be the current state of
the environment st, and the output produced will be a probability distribution over the
action space. Each possible action will be assigned a probability score indicating how
likely it is to be selected. Note that the output of the function depends on the weights θ
of the model. In order for the neural network to be a good approximation of the actual
optimal policy, we will need to train it by showing it numerous examples and adjusting
the weights so that the model will fit those examples. A detailed procedure for training
the neural network model is given in Sec. 2.1.4.

12

2.1.4 Policy gradient

Identifying what to learn in RL is a very important question and a critical branching
point. Algorithms usually try to learn one of the following:

• policy function (π)

• value function (V-function)

• action-value function (Q-function)

In this thesis we focus on learning a policy π(at|st) mapping a state st to a distribution
over the action space A(st).

PG (Policy gradient) is a policy optimization method that uses a parametrised function
representation of the policy πθ and tries to optimise the parameters θ by performing gra-
dient ascent updates. The updates are computed based on the gradient of a performance
objective J(θ) with respect to the parameters θ. This type of optimization method is
on-policy, meaning that updates must use data collected while acting with the most
recent version of the policy. It is also offline, meaning that the episode has to end before
the update can take place.

The performance objective that we aim to maximise is the expected return:

J(θ) = Eτ∼Pθ

[
R(τ)

]
, (2.10)

where the trajectory τ is sampled from the distribution Pθ defined by the policy πθ and
the transition function P . To sample a trajectory we actually have to sample a state
st ∼ P and an action at ∼ πθ for every time step t. The probability of a trajectory τ
under a policy πθ is given by:

Pθ(τ) = p0(s0)
T∏
t=0

πθ(at|st)P(st+1|st, at).

To optimise the parameters of the policy we will use a method based on the gradient of
the objective with respect to the policy parameters θ. Since we are trying to maximise
the objective our update method will approximate gradient ascent on the function J(θ):

θk+1 = θk + α∇θJ(θ),

where α is the learning rate (or the step size). The parameter α is a hyper-parameter
that must be fine-tuned during training.

Note that the objective function given in Eq. (2.10) is actually a function of the param-
eters θ. To see this we have to express the expectation as an integral over all possible
trajectories:

J(θ) = Eτ∼Pθ

[
R(τ)

]
=

∫
Pθ(τ)R(τ)Dτ.

Although we have an analytic expression for the gradient of the objective, this is not
very helpful. Since in general we have no access to the transition function P and to the
reward function R, there is no way to compute the gradient from this expression. Instead,

13

what we would like to do is express the gradient as an expectation over the probability
distribution of the trajectories. To do this we will use the policy gradient theorem:

∇θJ(θ) =

∫
∇θPθ(τ)R(τ)Dτ, (since ∇θR(τ) = 0)

∇θJ(θ) =

∫
Pθ(τ)∇θ logPθ(τ)R(τ)Dτ,

(since ∇θPθ(τ) = Pθ(τ)
∇θPθ(τ)
Pθ(τ)

= Pθ(τ)∇θ logPθ(τ))

∇θJ(θ) = Eτ∼Pθ

[
∇θ logPθ(τ)R(τ)

]
,

logPθ(τ) = logP(s0) +
T∑
t=0

[
log πθ(at|st) + logP(st+1|st, at)

]
,

∇θJ(θ) = Eτ∼Pθ

[
T∑
t=0

∇θ log πθ(at|st)R(τ)

]
. (since ∇θ logP(·) = 0)

Having the gradient expressed as an expectation means that we can approximate it using
samples. We can collect a set of trajectories D = {τi}i=1,...,N , obtained using the agent-
environment interaction loop. For each trajectory the agent uses the policy πθ to choose
actions. Then the policy gradient can be approximated by:

∇θJ(θ) ≈
1

N

N∑
i=1

T∑
t=0

∇θ log πθ(at,i|st,i)R(τi), (2.11)

where N is the number of trajectories collected in D. This method for calculating the
gradient of the objective, also known as Monte Carlo Policy Gradient, gives rise to a
pseudo-objective that we are trying to optimise:

Jpseudo(θ) =
1

N

N∑
i=1

T∑
t=0

log πθ(at,i|st,i)R(τi). (2.12)

The function given by Eq. (2.12) is usually called a pseudo-objective, because it does
not evaluate the metric that we aim to optimize. Our goal is to maximize the expected
return and this loss function is only useful to evaluate the gradient of our objective at
the current parameters, with data generated by the current parameters.

2.1.5 Variance reduction

As a Monte Carlo method this method is of high variance and thus produces slow learning.
In order to obtain a low variance estimate of the gradient we would need a huge amount
of sample trajectories. To reduce the variance of the approximation, a simple trick is

14

used. For any probability distribution Pθ parametrised by θ we have the following:

Ex∼Pθ
[∇θ logPθ(x)] =

∫
Pθ(x)∇θ logPθ(x)Dx

=

∫
Pθ(x)

∇θPθ(x)

Pθ(x)
Dx

=

∫
∇θPθ(x)Dx

= ∇θ1 = 0. (2.13)

An immediate consequence of Eq. (2.13) is that for any function b, which does not depend
on the action at, we have:

Eat∼πθ [∇θ log πθ(at|st)b(st)] = 0. (2.14)

This allows us to add or subtract b(st) from the expression in Eq. (2.11) without changing
it in expectation. Any function b used in this way is called a baseline:

∇θJ(θ) ≈
1

N

N∑
i=1

T∑
t=0

∇θ log πθ(at,i|st,i) (R(τi)− b(st)) . (2.15)

The optimal baseline can be derived by minimising the variance of the analytic expression
of the gradient. Detailed derivation of the formula is given in Ref. [20]:

b =
E[∇θ log

2 πθ(τ)R(τ)]

E[∇θ log
2 πθ(τ)]

.

The optimal baseline can be seen as the expected return when starting in s0, weighted by
the square of the log-probability of the policy. However, in practice, the type of baseline
used is simply the expected return of the trajectory:

b = E
[
R(τ)

]
≈ 1

N

N∑
i=1

T∑
t=0

rt+1.

This baseline has the intuitive property of centering the returns of the trajectories in D,
so that trajectories that are better than average have a positive return, and trajectories
that are worse than average have a negative return.

Another way to reduce variance is to notice that rewards obtained in previous time steps
should have no effect on current actions. Agents should only reinforce actions based on
future consequences and not on past experiences. Noting that previous rewards are not
a function of the current action, and plugging into Eq. (2.14), it can be seen that:

Eτ∼Pθ

[
∇θ log πθ(at|st)

t∑
t′=0

rt′+1

]
= 0.

Thus, in Eq. (2.11), instead of R(τ) =
T∑
t=0

rt+1 we could use the ‘reward-to-go’,
T∑
t′=t

rt′+1,

without changing the expectation:

∇θJ(θ) ≈
1

N

N∑
i=1

[
T∑
t=0

∇θ log πθ(at,i|st,i)
T∑
t′=t

rt′+1,i

]
. (2.16)

15

This version of the equation is informally called reward-to-go policy gradient.

Putting together the ideas of ‘reward-to-go’ and ‘baseline’ we arrive at the following
expression for the policy gradient:

∇θJ(θ) ≈
1

N

N∑
i=1

[
T∑
t=0

∇θ log πθ(at,i|st,i)

(
T∑
t′=t

rt+1,i − b(st)

)]

The baseline used in this work is the expected value function of state st, approximated
using the collected set of trajectories:

b(st) =
1

N

N∑
i=1

T∑
t′=t

rt′+1,i. (2.17)

2.1.6 Entropy regularization

The trade-off between exploration and exploitation is one of the most important chal-
lenges in reinforcement learning. Agents should prefer actions yielding high rewards
(exploit), but also, to find such actions, they have to try new actions that have not been
selected before (explore).

When learning a policy with PG, exploration is ensured by the fact that the policy
outputs a probability distribution over the action space and actions are selected in a non-
deterministic manner. However, an action producing some positive reward is reinforced
and thus the probability of selecting that action in the future is increased, which in turn
reinforces the action again. It might happen that the agent will always select this very
same action, while there could exist another action yielding a much higher return.

To encourage exploration we use a method called entropy regularization described in
Ref. [21, 22]. The reward returned by the environment at every time step is augmented
by an additional term - the entropy of the policy.

r∗t = rt + β−1H(πθ(·|st)),
where H(πθ(·|st)) represents the entropy of the probability distribution of the actions
that is proposed by the policy πθ for the state st, and is computed as:

H(πθ(·|st)) = −
∑

a∈A(st)

πθ(a|st) log πθ(a|st) = −Ea∼πθ

[
log πθ(a|st)

]
, (2.18)

and β is the inverse temperature factor that controls the level of regularization. Choosing
β = 0 would apply a maximum level of regularization resulting in a purely stochastic
policy, while choosing β = ∞ effectively removes the regularization.

Combining the techniques for variance reduction (‘reward-to-go’ and ‘baseline’) together
with entropy regularization yields the following expression for the gradient of the RL
objective:

∇θJ(θ) ∼
1

N

N∑
i=1

[
T∑
t=0

∇θ log πθ(at,i|st,i)×

×

[
T∑
t′=t

rt′+1,i − β−1

T∑
t=0

log πθ(at,i|st,i)− b(st)

]]
, (2.19)

16

where b(st) is the baseline computed as follows:

b(st) =
1

N

N∑
i=1

rt+1,i − β−1 log πθ(at,i|st,i).

Since our policy πθ is parametrised by a neural network we would like to use an automatic
differentiation software package [23, 24] to backpropagate the derivative of the objective
∇J(θ) in order to update the weights of the model. To use auto-differentiation we would
need to define a loss function such that its gradient is equal to the policy gradient.
Considering the function taken by integrating Eq. (2.19) we can see that this function
has the nice property that its gradient is equal to the policy gradient when the (st, at)
pairs are collected while acting with the current policy:

Jpseudo(θ) =
1

N

N∑
i=1

[
T∑
t=0

log πθ(at,i|st,i)×

×

[
T∑
t′=t

rt′+1,i −
1

2
β−1

T∑
t=0

log πθ(at,i|st,i)− b(st)

]]
. (2.20)

A detailed derivation of the formulas from Eqs. (2.19) and (2.20) can be found in Sec. B.

2.2 Imitation learning

In RL we are concerned with learning a policy that the agent can use to decide on which
action to take, for any state of the environment. Most RL algorithms work by trial-and-
error – the agent runs multiple episodes and progressively optimises its policy to obtain
higher returns. However, if we are provided with a set of high-return trajectories that
the agent should follow, we could instead use IL (Imitation learning) to learn a policy
function.

In IL, instead of trying to learn the policy by optimising for the expected return with
gradient ascent, we are provided with a set of sample trajectories by a knowledgeable
expert. These sample trajectories are called demonstrations. The agent then tries to
learn a policy that imitates the actions taken in the demonstrations, by maximizing a
similarity measure. In general, this approach is useful when we have access to an expert
at training time, and we can query the expert for more demonstrations or for evaluation.

Note that, given the state of the environment st, our policy defines a probability distri-
bution over the action space πθ(·|st), and the expert produces one ground-truth action
that should be taken, e.g., ak ∈ A(st). The output of the expert can also be represented
as a probability distribution, namely a ‘one-hot’ vector where all the values are set to
zero, and only the value at the index k is set to unity:

π̃(·|st) =
(
0, 0, · · · , 0, 1, 0, · · · , 0

)
.

During training we would like the probability distribution produced by our neural network
model to approximate the probability distribution produced by the expert. Thus, we will
define a similarity measure between the two distributions, and we will try to maximize
that measure by performing gradient ascent on it.

17

Figure 2.3: Behavioural cloning pipeline. The process for training an agent consists of two steps:
1) collecting a training set, and 2) training the policy using supervised learning with the loss
function defined in Eq. (2.21)

The most commonly used similarity measure between probability distributions is the
Kullback-Leibler divergence:

DKL(π̃||πθ) =
∑

a∈A(st)

π̃(a) log
π̃(a)

πθ(a)
.

In our case π̃(a) is equal to zero in all but one cases, meaning that these terms will vanish
from the sum leaving us with:

DKL(π̃||πθ) = −π̃(ak) log πθ(ak) = − log πθ(ak),

where ak is the action selected by the expert.

Note that the KL divergence actually measures the difference between the two distri-
butions, thus, we need to perform gradient descent instead. Using this function as a
similarity measure gives rise to the well-known cross-entropy loss function:

J(θ) = − 1

B

B∑
i=1

log πθ(ai), (2.21)

where B is the batch size for performing stochastic gradient descent.

The two most common approaches to applying IL are: behavioural cloning and data
aggregation. We will briefly describe each of the two.

2.2.1 Behavioural cloning

The simplest form of IL is BC (Behavioural cloning). This form of IL tries to learn
a policy using simple supervised learning. First, the set of trajectories provided by
the expert is divided into state-action pairs, which form the training dataset. Then,
supervised learning is applied by drawing random state-action pairs from the training
data and back-propagating the loss signal. During training we treat the data points from
the training set as i.i.d. (Independent and identically distributed). This assumption,
however, is violated since the states and actions in a single trajectory are not at all i.i.d..
Nevertheless, in some cases BC works perfectly fine even though the i.i.d. assumption is
not valid [25, 26].

18

Figure 2.4: Data aggregation pipeline. The process of training an agent consists of four steps:
1) collecting a training set, 2) training a policy using supervised learning, 3) performing policy
rollout to generate new data, 4) using an expert to label the newly generated data, and 5)
aggregating the new training examples into the old training set and repeat.

2.2.2 Direct policy learning with data aggregation

As we mentioned earlier, the data points in the training set are not i.i.d.. Leaving aside
the fact that this assumption is not valid, there is another more subtle problem with BC.
Another assumption made for the training and testing data is that the data points in
the test set are drawn from the same distribution as the training set. The validity of
this assumption allows us to estimate the out-of-sample performance of our classifier by
using the in-sample performance. Thus, minimising the in-sample performance results
in minimising the out-of-sample performance. However, the distribution of the training
data (pdata) is usually not the same as the distribution of the data during testing (pπθ).
During testing the agent acts according to the learned policy, and small deviations from
the demonstrated behaviour would force the agent into new states, thus modifying the
distribution over the states in the test set. This problem is called a distribution mismatch.

A way to fix the issue is to change the data so that pdata equals pπθ . This approach is
known as data aggregation, and the corresponding algorithm is called DAgger. DPL
(Direct policy learning) with data aggregation is an improved version of BC; however,
for this method to work we must have access to an expert that we can query at training
time. First we train the policy on the initial training set Di. After that we collect
trajectories by rolling out the trained policy, and we ask the expert to label every state
of the trajectories. This way we collect a new training set Dπ. Finally, we aggregate the
initial training set and the newly labelled training set Di+1 = Di∪Dπ, and we repeat the
process. A detailed description of this algorithm can be found in Ref. [27].

2.3 Search algorithms

In a fully observable, deterministic, and known environment, the solution to any problem
is a fixed sequence of actions, called a path. An optimal solution would be the path
with the lowest cost. In our problem, that would be the shortest path. In this setting,
the optimal solution could be found with a state-space search. The state space can be

19

Figure 2.5: State-space tree search algorithm. Starting from the initial state, at every step we
select one node and consider all possible actions {a1, a2, ..., ad} that can be taken from that node.
Different search algorithm use different procedures for selecting the next node to be expanded.
The search process continues until the goal node is reached.

represented as a graph. The states st are represented as the vertices of the graph, and
the actions at transitioning one state to another are represented as directed edges.

A search algorithm works by superimposing a search tree over the state-space graph
(see Fig. 2.5). The algorithm examines the various paths formed from the initial state,
and tries to find a path that reaches a goal state. The initial state of the problem is placed
at the root of the tree. A node is expanded by considering the available actions for that
state, and generating a new child node for each of the states resulting after taking each
of the actions. The set of all non-expanded nodes is called a fringe (see Fig.2.6. A search
algorithm proceeds by iteratively selecting a node for expansion from the fringe (starting
with the root), then generating all child nodes of that node, and finally adding the newly
generated nodes to the fringe.

Basic search methods rely on systematically exploring the entire search-space until a
solution is found. Heuristic search methods use a heuristic function to evaluate any node
n of the tree and to guide the search towards more promising paths.

The performance of search algorithms can be evaluated in four ways:

• Completeness: is the algorithm guaranteed to find a solution when one exists,
and to correctly report failure otherwise?

• Optimality: does the algorithm find an optimal solution out of all solutions?

• Time complexity: the time it takes to find a solution, usually measured in the
number of expanded nodes;

• Space complexity: the memory needed to perform the search.

20

In this thesis two common search algorithms are used. These are A∗ search and beam
search. We will describe how these algorithms operate and compare their performance.

2.3.1 A* search

A∗ search is the most common informed search algorithm. The algorithm uses an eval-
uation function f(n) to evaluate any node n in the fringe, and always expands the node
with the minimum value. The evaluation function consists of two parts:

f(n) = g(n) + h(n)

where:

• g(n) is the path cost from the initial node to the node n;

• h(n) is the estimated cost of a path from node n to a goal node.

The A∗ algorithm is complete and, depending on the heuristic function, it could be
optimal. The key properties that the heuristic function must have in order for A∗ to be
optimal are:

• admissibility: it never overestimates the cost to reach the goal (it is optimistic);

• consistency: for every node n and every successor n′ of n generated by an action a,
we have: h(n) ≤ cost(n, a, n′) + h(n′).

A complete description of the A∗ algorithm can be found in Ref. [28].

The main issue with A∗ is its use of memory. All evaluated and unexpanded nodes are
kept in the fringe and during the search process the fringe grows exponentially large.
However, this problem can be overcome by using a variant of A∗ called IDA∗ (Iterative-
deepening A∗ search).

Another problem is that A∗ expands a lot of nodes, i.e., it takes a lot of time to find a
solution. To find the solution, the algorithm must expand all nodes that have cost lower
than the optimal cost f(n) ≤ C∗, and in general there are exponentially many such nodes.
However, if we are willing to accept solutions that are sub-optimal, but are good enough
according to some extra criterion, we can run A∗ with an inadmissible heuristic – one
that may overestimate. This way we risk missing the optimal solution, but the heuristic
could guide the search to a solution while expanding fewer nodes.

2.3.2 Beam search

Global search algorithms are usually inefficient in large state spaces because they have to
explore the entire state space to find the optimal solution. Informed search algorithms
such as A∗ use heuristics to prune the search tree; however, only paths that are certain not
to be optimal are pruned. This is a problem because we are still left with an exponential
amount of work to do. This type of pruning reduces the problem multiplicatively, not
exponentially.

21

Figure 2.6: Beam search algorithm. At every step we consider a set of nodes called the fringe
which will be expanded. Initially only the starting state is in the fringe. At every iteration we
select the top k nodes from the fringe and expand them. After that a new fringe containing
all the newly expanded nodes is created. This process continues iteratively until a goal node is
reached.

Local search algorithms, on the other hand, are usually very efficient and quickly find
solutions to the problem. However, these solutions are not guaranteed to be optimal.
During the process of pruning, local search algorithms prune more aggressively and, thus,
a path leading to the optimal solution might be pruned, without ever being considered.
Obviously there is a trade-off between optimality and efficiency. If we are required to
find an optimal solution at all costs, then local search will not do the job. Local search
algorithms, however, use little memory and can often find a good near-optimal solution
for a reasonable amount of time.

Beam search is a kind of local search algorithm. Thus, beam search is neither complete,
nor optimal. However, local search algorithms use little memory and can often find a
good near-optimal solution for a reasonable amount of time. Like A∗, beam search is also
an informed search algorithm, which means that it also uses an evaluation function f(n).

In this work we will be using beam search which is a kind of a local search algorithm.
The working process of beam search is shown in Fig. 2.6.

Note that A∗ uses an evaluation function that tries to predict the length of the path from
the current node to the goal node. In order for A∗ to work properly this function must
have the properties of admissibility and consistency. However, designing a non-trivial
consistent heuristic is a very hard task and that is why researchers are exploring different
ways of applying inconsistent heuristics [29].

Beam search on the other hand is designed to work using an evaluation function that
does not need to be consistent. The algorithm uses a scoring function s(n) that assigns a
score to every node. Nodes that are closer to the goal should be scored higher, however

22

this is not a necessary condition.

The function s(n) simply assigns a score to every node, with the aim to assign higher
scores to nodes that are closer to the goal, and lower scores to nodes that are further
away from the goal. Note, however, that this is not a necessary condition and the score
function is not perfect. It might assign a lower score to a node that is actually along the
optimal path. The algorithm would then prune that node, thus losing the optimal path.
If we had access to a perfect scoring function we would not need to perform any kind of
search and would just expand only the best node at every step.

The algorithm works by limiting the size of the fringe to a fixed size k, called the beam
size. At every step the algorithm expands all of the nodes in the fringe, instead of picking
one. All of the generated successors are evaluated using the evaluation function s(n), and
the k best successors are kept in the fringe. The k best successors represent the k best
paths the algorithm continues to extend while trying to find a solution. High-cost paths
are abandoned and only low-cost paths are expanded in the next iteration.

23

Chapter 3

Quantum computing prerequisites

In this chapter we introduce the field of quantum mechanics, defining the most important
quantities that are used in this work. We start off by revisiting classical computers in
Sec. 3.1. Qubits – the quantum version of classical bits are introduced in Sec. 3.2. Multi-
qubit quantum systems are described in Sec. 3.3 and in Sec. 3.4 we show how operations
are performed on a quantum computer. One of the most important properties of quantum
systems – quantum entanglement; is examined in Sec. 3.5 and 3.6. For a thorough review
of the subject of Quantum Mechanics the reader is referred to [30, 31].

3.1 Classical computers

The simplest unit of computation is the classical bit. Classical bits take one of two values
– 0 or 1. All the algorithms and data structures are entirely built up from classical bits
by clever manipulations with classical logic gates (AND, OR, XOR, etc.).

The quantum version of the classical bit is called a qubit. When measured, it also can
only give an output of 0 or 1. We will later describe what we mean by ‘measurement’,
but it is important to point out that the internal structure of the qubit is much more
complicated that 0s and 1s. Qubits can also be manipulated in new ways that can only
be described by the laws of quantum mechanics. Thus, new gates exit, called quantum
gates that will be used.

3.1.1 Bits

A classical bit is a way of describing a system whose set of states is of size two. We
usually write these two possible states as 0 and 1, or as F and T.

We could also represent the two states in vector form:

F =

(
1
0

)
, T =

(
0
1

)
.

This is simply a one-hot vector representation, where the position of the 1 indicates in
which state the system currently is. Using this representation of a bit, we could describe

24

one byte (8-bits) as follows:

11010011 = TTFTFFTT =

(
0 0 1 0 1 1 0 0
1 1 0 1 0 0 1 1

)
. (3.1)

An 8-bit system is fully described by listing the state in which each of the eight bits
currently is. Thus, the number of parameters needed to describe the full system, using
this representation, grows linearly with the size of the system. However, if we try to
represent the entire 8-bit system as a one-hot vector it will be a 256-dimensional vector
with a single 1 positioned at the index of the current state of the system. We can see
that trying to represent states in this form results in an exponential growth:

11010011 =





0 00000000

0 00000001
...

...
1 11010011
...

...
0 11111111

.

More formally, the one-hot vector of a classical system can be formed by taking the
tensor product of the one-hot vectors representing the individual bits. Considering a
two-bit system, the tensor product is applied as follows:

10 = TF =

(
0
1

)
⊗
(
1
0

)
=

0×
(
1
0

)
1×

(
1
0

)
 =


0
0
1
0

 .

Although this representation is not used when working with classical computers, it would
be useful for us before transitioning to quantum systems. We will see that, when we try
to simulate quantum systems on a classical computer, we cannot simply list the state of
each individual qubit. Rather, we will be compelled to write them in this tensor-product
form.

3.1.2 Gates

Bits are manipulated by applying logic gates. When our system is represented using
a one-hot vector, we can see that we could also represent logic gates using a matrix
form. The application of a logic gate to a system is then mathematically modelled by
multiplying the system state vector from the left by the gate matrix. For example, logical
NOT operates on a single bit and can be represented as a 2× 2 matrix. Logical AND, on
the other hand, operates on two bits and outputs a single bit. Thus, we could represent
that operation using a 2× 4 matrix:

NOT =

F T()
0 1 F
1 0 T

, AND =

FF FT TF TT()
1 1 1 0 F
0 0 0 1 T

.

25

We can see that the matrix form of a logic gate consists of 0s and 1s and actually
corresponds to the truth table that would represent this operation. Then, inverting an
F-bit into a T-bit would be written as:

()
0 1

1 0

F()
1

0
=

T()
0

1
.

AND-ing two bits (T&F = F) would be written as:

()
1 1 1 0

0 0 0 1

TF


0

0

1

0

=

F()
1

0
.

One gate of special importance to classical computers is the NAND gate, because it has
the property of functional completeness. That is, every other boolean function can be
implemented using only a combination of NAND gates. The NAND gate corresponds to
applying an AND gate followed by a NOT gate. Applying multiple gates in succession
can be represented by chaining matrix multiplications from the left:

NAND = NOT × AND =

(
0 1
1 0

)(
1 1 1 0
0 0 0 1

)
=

(
0 0 0 1
1 1 1 0

)
.

It should be noted that chaining the AND and the NOT gate is possible, because the size
of the output of the AND gate matches the size of the input for the NOT gate. However
if we would like to first apply the NOT gate to one of the bits and then apply the AND
gate, things get a little different. Applying a NOT gate only on the first bit of a two-bit
system corresponds to leaving the second bit unchanged by applying an identity gate
on it. To see how this operation would be applied to the entire system state vector, we
can first apply the NOT and Id gates to the separate bits and after that get the tensor
product. Mathematically, this can be expressed as follows:(

0 1
1 0

)(
a0
a1

)
⊗
(
1 0
0 1

)(
b0

b1

)
.

Using the distributive property of the tensor product we can see that this corresponds
to: ((

0 1
1 0

)
⊗
(
1 0
0 1

))((
a0
a1

)
⊗
(

b0

b1

))
.

Thus, we can act on the entire system with the tensor product between the NOT gate
and the Id gate:

NOT ⊗ Id =

(
0 1
1 0

)
⊗
(
1 0
0 1

)
=

0×
(
1 0
0 1

)
1×

(
1 0
0 1

)
1×

(
1 0
0 1

)
0×

(
1 0
0 1

)
 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ,

26




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

TF


0

0

1

0

=

FF


1

0

0

0

.

A nice property of the NOT gate is that the number of input bits is the same as the
number of output bits. In the last example we can see that applying the NOT ⊗ Id
gate leaves the size of the system unchanged. This property makes chaining operations
somewhat easier as we do not need to keep track of the number of bits in our system. As
we will see later, all quantum gates have this property.

In general, if we have a system of n bits and we would like to apply gate X1 on the
first k1 bits, and gate X2 on the next k2 bits, and so on, and finally apply gate Xm on
the last km bits (k1 + k2 + · · · + km = n), then we need to consider the tensor product
X1 ⊗X2 ⊗ ...⊗Xm. As mentioned earlier, when working with quantum systems we will
have to use the full tensor-product form to mathematically represent the system. Thus,
applying one gate on one subset of the qubits and another gate on the other subset will
require using the tensor product between these gates. We will elaborate more on that in
Sec 3.4.3.

3.2 Quantum bits of information (qubits)

3.2.1 From classical to quantum

Classical bits always have a well-defined state – they are either 0 or 1, either F or T, but
they cannot be both. However, in the quantum world things are different. The famous
Stern-Gerlach experiment [32] was explained by proposing that electrons have an entirely
new property associated with them called spin. Spin is a property of the quantum world
with no classical analogue, although it bears some formal relation to angular momentum.
When we measure the spin of a particle in a given direction it can only be found in
two states – it either spins anti-clockwise (spin up) or clockwise (spin down), w.r.t. the
measurement direction. The result of the measurement depends on the initial state of
the particle, which is described by a two-dimensional complex vector:

ψ =

[]
α up

β down ,

where α, β ∈ C.

The squares of the absolute values |α|2 and |β|2 determine the probabilities that the
system collapses in each of the two possible states after measurement. In order to ensure
that the total probability is unity we must have |α|2 + |β|2 = 1. The numbers α and β
are known as the complex amplitudes of the state ψ. The name comes from the fact that
ψ behaves mathematically as a complex wave when its time evolution is studied.

27

We can see that the state vector of a qubit ψ can be decomposed as:

ψ =

[
α
β

]
= α

[
1
0

]
+ β

[
0
1

]
.

We say that our quantum state is in a superposition between the two basis states. It is in
both states simultaneously, and only when measured, it collapses to one of the two basis
states.

In quantum mechanics bra-ket notation is used to denote vectors that represent quantum
states. Thus, we can write the previous equation using kets as:

|ψ⟩ = α |0⟩+ β |1⟩ ,

where:
|0⟩ =

[
1
0

]
, |1⟩ =

[
0
1

]
.

For the given spin directions (up and down), the vectors |0⟩ and |1⟩ are the canonical
basis vectors of the vector-space C2.

Every ket vector has a corresponding bra which augments the vector space with an inner
product. The bra of a ket vector |ψ⟩ is the row vector arrived at by taking the hermitian
conjugate:

⟨ψ| = |ψ⟩† =
[
ᾱ, β̄

]
,

where ᾱ and β̄ denote the complex conjugates of α and β respectively.

The inner product between two vectors |ϕ⟩ and |ψ⟩ is denoted as ⟨ϕ|ψ⟩, and is evaluated
by performing a matrix multiplication between a conjugated row vector and a column
vector. The result is a complex number known as the transition amplitude. The transition
amplitude allows us to determine how likely it is for a state to transition into another
state upon measurement. The probability p of state |ψ⟩ transitioning into state |ϕ⟩ is
equal to the square of the absolute value of the transition amplitude. Thus:

A = ⟨ϕ|ψ⟩ =
[
γ̄, δ̄

] [α
β

]
= γ̄α + δ̄β,

p(|ψ⟩⇝ |ϕ⟩) = |A|2.

For example, when measuring the spin along the z-direction, we would like to compute
how likely it is that our system transitions into a spin-up state. The transition ampli-
tude is given by taking the inner product between |0⟩ and |ψ⟩, and the probability for
this transition is calculated by taking the square of the absolute value of this transition
amplitude:

A = ⟨0|ψ⟩ =
[
1, 0

] [α
β

]
= α,

p(|ψ⟩⇝ |↑⟩) = |A|2 = |α|2.

3.2.2 Observables and measurement

The state of a particle is described by a two-dimensional complex vector, but we have
no access to the components of the vector. We can only observe the direction of the

28

spin (up or down) when a measurement is performed. Thus, observables are the real
physical quantities that are actually possible to be observed. In quantum mechanics to
every physical observable there corresponds a hermitian operator.

To understand what this means let us consider as an example the spin operator along the
z direction:

Z =

[
1 0
0 −1

]
.

We will shortly show how this operator is arrived at. One property that hermitian
operators have is that their eigenvalues are all real numbers. The reason why this is
important is because the eigenvalues of the operator are the only values that can be
observed as a result of the measurement. The eigenvalues of the operator Z are λ0 = 1
and λ1 = −1, which corresponds to measuring the spin of the particle along the direction
of the +z or −z axis.

In order to understand how to calculate which of the possible values of an observable is
measured, we need to describe two differences that are present between classical systems
and quantum systems:

• In classical mechanics the act of measurement would leave the system in whatever
state it was. However, in quantum mechanics states get perturbed and modified as
a result of measuring. In fact, performing a measurement collapses the quantum
system into one of the eigenvectors of the observable operator;

• In classical mechanics the result of a measurement can be predicted with certainty
if we know the state of the classical system. In quantum mechanics, a measurement
is inherently a non-deterministic process, only the probabilities of observing the
possible values can be calculated.

If the result of measuring the state |ψ⟩ with the operator Ω is the eigenvalue λi, then the
system state collapses into the eigenvector |ei⟩ corresponding to the measured eigenvalue.
In order to calculate the probability of measuring any of the possible values, we can
calculate the probability of our current state |ψ⟩ transitioning into the corresponding
eigenvectors. Going back to our example, the probability of measuring our particle in the
spin-up state, that is measuring λ0, is equal to the probability of our state transitioning
into the eigenvector |e0⟩ corresponding to the spin-up state.

The eigenvectors of an observable operator form an orthonormal basis for the state space
of our quantum system. Therefore, we can express |ψ⟩ as a linear combination in this
basis:

|ψ⟩ = c0 |e0⟩+ c1 |e1⟩+ ...+ cn−1 |en−1⟩ . (3.2)

Now it is obvious that the values |c0|2, |c1|2, ..., |cn−1|2 give exactly the probabilities that
we measure the corresponding eigenvalues of the observable operator, since ci = ⟨ei|ψ⟩.
From this we can conclude that the state |ψ⟩ can be expressed in the basis of the observable
operator as:

|ψ⟩ = ⟨e0|ψ⟩ |e0⟩+ ⟨e1|ψ⟩ |e1⟩+ ...+ ⟨en−1|ψ⟩ |en−1⟩ .

Finally, using the eigen decomposition property we can write any hermitian operator Ω
as:

Ω =
∑
i

λi |ei⟩ ⟨ei| .

29

Using this formula we can reconstruct the representation of our spin operator in the z
direction. We know that our basis vectors |0⟩ and |1⟩ are eigenvectors of the spin operator,
because when measured particles will collapse into one of these two states. And we also
know that our eigenvalues are λ0 = 1 and λ1 = −1, because we can only measure whether
the spin is along or opposite the z direction. Thus, for the spin operator we have:

Z = |0⟩ ⟨0| − |1⟩ ⟨1| =
[
1
0

] [
1 0

]
−
[
0
1

] [
0 1

]
=

[
1 0
0 −1

]

3.2.3 The Bloch sphere

Note that using Euler’s formula for representing complex numbers, α = reiφ, we can
express any quantum state as:

|ψ⟩ = α |0⟩+ β |1⟩ =

= eiγ
(
cos

θ

2
|0⟩+ eiφ sin

θ

2
|1⟩
)

= eiγ |ϕ⟩ ,

where
|ϕ⟩ = cos

θ

2
|0⟩+ eiφ sin

θ

2
|1⟩ .

Now suppose that we try to measure the states |ψ⟩ and |ϕ⟩ using some observable operator
Ω and let |x⟩ be an arbitrary eigenvector of Ω. Then, for the probability of measuring
the eigenvalue corresponding to |x⟩ we have:

| ⟨x|ψ⟩ |2 = | ⟨x| eiγ |ϕ⟩ |2 =
∣∣∣∣ [x̄1, x̄2

] [eiγα
eiγβ

] ∣∣∣∣2 = (3.3)

= |eiγ|2| ⟨x|ϕ⟩ |2 = (3.4)
= | ⟨x|ϕ⟩ |2. (3.5)

The variable γ is known as global phase. Two states that only differ by global phase cannot
be distinguished from one another. The reason for this is that they behave identically
during measurements and measurement is the only way we can extract information from
qubits.

Thus, we can safely ignore the factor eiγ when representing quantum states. Hence, the
statevector of any qubit can be described using only two real variables θ, φ:

|ψ⟩ = cos
θ

2
|0⟩+ eiφ sin

θ

2
|1⟩ ,

where
0 ≤ θ ≤ π, 0 ≤ φ < 2π.

If we interpret θ and φ as spherical coordinates we can plot any single qubit state on
the surface of a unit sphere, known as the Bloch sphere, as shown in Fig. 3.1. The Bloch
sphere is very useful for visualising the state of a single qubit; however, it must be kept
in mind that there is no simple generalization of the Bloch sphere for multiple qubits.

30

Figure 3.1: The Bloch sphere. Geometrical representation of a single qubit state vector. The
north and south poles show the standard basis vectors |0⟩ and |1⟩.

3.3 Multi-qubit systems

3.3.1 Hilbert spaces

The state spaces of quantum system are Hilbert spaces, that is they are complex inner
product spaces that are complete. In digital quantum computing we will only deal with
finite dimensional spaces. However, in quantum mechanics the state space of a quantum
system may be infinitely dimensional, and satisfies additional technical restrictions.

In order to combine quantum systems one has to use the tensor product. We know that
a single qubit is an element of C2. Thus, the state of a system consisting of n qubits is
an element of C2 ⊗ C2 ⊗ ...⊗ C2︸ ︷︷ ︸

n times

.

As an example, the state vector of a 2 qubit system is an element of C2⊗C2 = C4. There
are four computational basis vectors for the C4 space denoted |00⟩, |01⟩, |10⟩ and |11⟩.
These are formed by taking the tensor product between the basis vectors in the C2 space,

31

namely:

|00⟩ = |0⟩ ⊗ |0⟩ =
[
1
0

]
⊗
[
1
0

]
=


1
0
0
0

 ,

|01⟩ = |0⟩ ⊗ |1⟩ =
[
1
0

]
⊗
[
0
1

]
=


0
1
0
0

 ,

|10⟩ = |1⟩ ⊗ |0⟩ =
[
0
1

]
⊗
[
1
0

]
=


0
0
1
0

 ,

|11⟩ = |1⟩ ⊗ |1⟩ =
[
0
1

]
⊗
[
0
1

]
=


0
0
0
1

 .
Any 2-qubit state exists in a superposition of these four states, thus the state vector of
such a system can be written as:

|ψ⟩ = α |00⟩+ β |01⟩+ γ |10⟩+ δ |11⟩ , (3.6)

where α, β, γ, δ ∈ C. Similar to the case of a single qubit, the squares of the absolute
values of the amplitudes determine the probabilities that our system collapses to each of
the basis states upon measurement. We therefore have again the normalization condition:

|α|2 + |β|2 + |γ|2 + |δ|2 = 1.

Analogously, the basis vectors for the C2n = C2 ⊗ C2 ⊗ ...⊗ C2 space can be derived by
performing the tensor products between the basis vectors of the individual spaces. And
thus, the state vector of any n-qubit system can be expressed as:

|ψ⟩ = c0 |e0⟩+ c1 |e1⟩+ ...+ c2n−1 |e2n−1⟩ ,

where |e0⟩ , |e1⟩ , ..., |e2n−1⟩ are the basis vectors of the C2n space.

3.3.2 Quantum entanglement

We know that performing a measurement on a quantum system collapses the system into
one of the basis vectors of the observable operator. Thus, all of the qubits collapse to a
well-known state, either |0⟩ or |1⟩. However, for a multi-qubit system we could measure
any subset of the qubits. For example, in our two-qubit system from Eq. (3.6) if we
measure only the first qubit we would receive a value of 0 with probability |α|2 + |β|2,
which corresponds to our system collapsing into a superposition of |00⟩ and |01⟩. After
this measurement our collapsed state would be:

|ψ′⟩ = α√
|α|2 + |β|2

|00⟩+ β√
|α|2 + |β|2

|01⟩ . (3.7)

32

Important two qubit quantum states are the Bell states. One of them is given in Eq.(3.8)

|ψBell⟩ =


1√
2
0
0
1√
2

 (3.8)

The state |ψBell⟩ has the property that the measurement outcomes of the separate qubits
are correlated. If we measure the first qubit and after that we measure the second
qubit, then the second measurement will always produce the same output as the first
measurement. Observe that if the result of measuring the first qubit is 0, then applying
Eq. (3.7) yields that our state collapses to the basis state |00⟩, and thus measuring the
second qubit must produce the result 0 again. The same reasoning applies if the result
of measuring the first qubit is 1. In this case we say that the states are entangled. As
it turns out representing entangled quantum systems by listing the state vectors of each
qubit separately, as for the classical system in Eq. (3.1), is impossible. The individual
states of the system are intimately related to one another and the only way to represent
the state vector of the system is to use the full tensor product.

To see why this is true assume that we could list the qubits of the Bell state separately.
Thus, assume that there exist α, β, γ, δ ∈ C such that:

|q0⟩ =
[
α
β

]
, |q1⟩ =

[
γ
δ

]
,

|ψBell⟩ = |q0⟩ ⊗ |q1⟩ =


αγ
αδ
βγ
βδ

 =


1√
2

0
0
1√
2

 . (3.9)

From Eq. (3.9) we can see that we are left with the following system of equations, which
has no solution: 

αγ =
1√
2

αδ = 0

βγ = 0

βδ =
1√
2

Thus, the state |ψBell⟩ cannot be represented by listing each of its qubit state vectors
separately.

In general, quantum states that can be separated into the tensor product of constituent
subsystems are called product states, or also separable states. Quantum states that cannot
be separated into the tensor product of any subsystems are called entangled states.

3.4 Quantum gates

Computations on a classical computer are conducted by applying logic gates to manip-
ulate the system. Analogously, computations on a quantum computer are conducted by

33

applying quantum gates to the state of the quantum system.

3.4.1 Unitary gates

As we already said, the action of a gate on a specific state is found by multiplying the state
vector |ψ⟩, which represents the quantum state, by the operator matrix that represents
the gate. The state vector of any quantum state is a unit vector from the Hilbert space
C2n , where n is the number of qubits in the system. Applying a quantum gate produces a
new quantum state, which, in order to be a valid quantum state, must be of unit length.
Thus, operations on a qubit system must preserve the norm:

∥U |ψ⟩ ∥ = ∥ |ψ⟩ ∥,

which is equivalent to: 〈
ψU †∣∣Uψ〉 = ⟨ψ|U †U |ψ⟩ = ⟨ψ|ψ⟩ . (3.10)

Equation (3.10) is valid if and only if the matrix U is a unitary matrix, i.e.,

UU † = U †U = I. (3.11)

From here we see that every quantum gate is in fact a unitary matrix. This also implies
that noise-free operations performed with quantum gates are reversible. If a given quan-
tum gate U is applied to a quantum system, then the matrix U † represents the quantum
gate that would undo our previous operation:

U |ψ⟩ = |ϕ⟩ ,
U † |ϕ⟩ = U †U |ψ⟩ = |ψ⟩ .

In a reversible computation no information is ever erased, because the input can always
be recovered from the output.

3.4.2 Single-qubit gates

A quantum gate is an operator that acts on the qubits, and is represented by a unitary
matrix. Single-qubit operators are 2× 2 matrices, and applying the operator is done by
multiplying the qubit state vector with the operator matrix. The result of the multipli-
cation is the state vector of the quantum system that results from applying this quantum
gate.

Three very important single-qubit gates are the Pauli matrices:

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
.

They occur in the Pauli equation, which is a formulation of the Schroedinger equation
for spin-1

2
particles, which takes into account the interaction of the particle’s spin with

an external electromagnetic field.

Each Pauli matrix is Hermitian, and together with the identity matrix I, the Pauli
matrices form a basis for the real vector space of 2 × 2 Hermitian matrices. Thus, any

34

2× 2 Hermitian matrix can be represented as a linear combination of these four matrices
using only real coefficients.

Using the Bloch sphere (see Fig. 3.1) we can visually represent the action of qubit gates
on a single qubit. The action of every unitary 2 × 2 matrix changes the amplitudes of
our qubit and thus changes the spherical coordinates θ and φ used to represent the qubit
on the Bloch sphere. Suppose a single qubit is represented by the vector h⃗ on the Bloch
sphere. Then we could apply a rotation operator R(γ) that rotates this vector by an
angle γ radians along a given axis. This rotation operator is defined in terms of the Pauli
matrices. For example, performing a rotation on the quantum state by γ radians along
the x axis can be done by the operator:

Rx(γ) = exp
(
−iγ

2
X
)
= cos

γ

2
I − i sin

γ

2
X.

Similarly we could define rotation operators along the y and z axes:

Ry(γ) = exp
(
−iγ

2
Y
)
= cos

γ

2
I − i sin

γ

2
Y,

Rz(γ) = exp
(
−iγ

2
Z
)
= cos

γ

2
I − i sin

γ

2
Z.

Note that the Pauli matrices are themselves unitary operators, which means that they
are valid single-qubit quantum gates and define the following effects on a qubit state:

• Bit-flip
X |0⟩ = |1⟩ , X |1⟩ = |0⟩ ,

• Phase-flip

Z |0⟩ = |0⟩ , Z |1⟩ = − |1⟩ ,

• Bit-Phase-flip
Y |0⟩ = i |1⟩ , Y |1⟩ = −i |0⟩ .

Finally, note that any quantum gate can be represented as rotating the vector on the Bloch
sphere along some axis. Applying a rotation along an arbitrary axis n⃗ = (nx, ny, nz) is
done by the rotation operator:

Rn(γ) = cos
γ

2
I − i sin

γ

2
(nxX + nyY + nzZ) . (3.12)

3.4.3 Multi-qubit gates

For quantum computing one of the most important features of a multi-qubit quantum
state is the presence of entanglement between individual qubits. We would like to be
able to modify the degree of entanglement of such systems. However, when applying
single-qubit gates, we only manipulate individual qubits without changing the degree of
entanglement of that qubit with the rest of the system. In order to create or destroy
entanglement we need to apply qubit gates that act simultaneously on more that one
qubit, that is, we need to apply multi-qubit quantum gates [33].

35

Figure 3.2: Quantum circuit for a 3-qubit quantum state. Qubits A and B are prepared in state
|0⟩, while qubit C is prepared in state |1⟩. The quantum gate U is applied to qubits A and C.

It should be noted that not all multi-qubit gates modify the degree of entanglement of a
quantum state. For example, we could form a two qubit gate by simultaneously applying
two single-qubit gates on two separate qubits. Consider applying gate U1 on the first
qubit and applying gate U2 on the second qubit of a two qubit system. This can be done
by applying the tensor product U1 ⊗ U2 to the entire system:

UA =

[
a b
c d

]
, UB =

[
e f
g h

]
,

U = UA ⊗ UB =


ae af be bf
ag ah bg bh
ce cf de df
cg ch dg df

 .
Thus, we can form two-qubit gates by taking the tensor product of single-qubit gates.
However, these gates still only operate on individual qubits. Qubit gates that change the
entanglement of the quantum system are such gates that cannot be written as the tensor
product of single-qubit gates. These gates are called entangling gates.

One question that arises is how to apply a gate on a subset of the bits that are not
consecutive. In Sec. 3.1.2 we showed that if we apply a k1-bit gate to the first k1 classical
bits, and a k2-bit gate to the next k2 classical bits, and so on, then we need to take the
tensor product between these gates and apply the resulting matrix on the state vector.
Now, suppose that we have an n-qubit system and apply a two-qubit gate that acts on
two qubits that are not next to each other. In order to see how we can achieve this let
us consider a simple example. Ultimately, we would like to come up with a procedure
for applying multi-qubit gates to arbitrary quantum sates. However, in order to make
the discussion more comprehensible, in what follows we will consider a product quantum
state.

As an example, consider the following 3-qubit product state given in Fig. 3.2. We apply
the following quantum gate U to the state |ψ⟩ acting on qubits A and C:

U =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


AC

,

|ψ⟩ = |0A0B1C⟩ =
[
1
0

]
A

⊗
[
1
0

]
B

⊗
[
0
1

]
C

.

36

What we do is permute the qubits, so that the first and the third qubits are next to each
other, apply the matrix, and then transform back the result undoing the first permutation.
But how exactly is the state vector modified when permuting two qubits? To see this,
let us compare the state vectors of the original state |ψ⟩ and the permuted state |ψ′⟩.
We reshape the original state vector of the system and the state vector of the permuted
system into tensors of shape 2× 2× 2. Comparing the 2× 2× 2 tensors will allow us to
find a pattern that corresponds to swapping two qubits:

|ψ⟩ = |0A0B1C⟩ =
[
1
0

]
A

⊗
[
1
0

]
B

⊗
[
0
1

]
C

=



1A × 1B × 0C
1A × 1B × 1C
1A × 0B × 0C
1A × 0B × 1C
0A × 1B × 0C
0A × 1B × 1C
0A × 0B × 0C
0A × 0B × 1C


,

1A × 1B × 0C 1A × 0B × 0C

1A × 1B × 1C 1A × 0B × 1C

0A × 1B × 0C 0A × 0B × 0C

0A × 1B × 1C 0A × 0B × 1C

|ψ⟩ =

Figure 3.3: Tensor form of quantum state |ψ⟩

|ψ′⟩ = |0B0A1C⟩ =
[
1
0

]
B

⊗
[
1
0

]
A

⊗
[
0
1

]
C

=



1B × 1A × 0C
1B × 1A × 1C
1B × 0A × 0C
1B × 0A × 1C
0B × 1A × 0C
0B × 1A × 1C
0B × 0A × 0C
0B × 0A × 1C


.

1B × 1A × 0C 1B × 0A × 0C

1B × 1A × 1C 1B × 0A × 1C

0B × 1A × 0C 0B × 0A × 0C

0B × 1A × 1C 0B × 0A × 1C

|ψ′⟩ =

Figure 3.4: Tensor form of quantum state |ψ′⟩

Looking at the two states we see that swapping qubits A and B actually corresponds
to transposing the horizontal axis with the depth axis. Indexing the axes we start from
the outermost one moving inwards. The depth axis chains two 2× 2 matrices, thus, this
is the outermost axis and is indexed as axis 0. Next, the horizontal axis chains two 2-
dimensional vectors, and thus, is indexed as axis 1. Finally, the vertical axis chains scalars

37

and is indexed axis 2. Swapping qubit A with qubit B can be described as transposing
axis 0 with axis 1.

In general, for an n-qubit system, if we want to swap qubit i with qubit j, what we need
to do is reshape the state vector into a 2× 2× ...× 2︸ ︷︷ ︸

n times

tensor, transpose axis i with axis

j, and reshape the tensor back again into a 2n-dimensional vector.

In this work use only two-qubit quantum gates. Note that the set of all two-qubit gates
forms a set of universal quantum gates. That is, any operation possible on a quantum
computer can be reproduced as a finite sequence of gates from the set (see [34]).

3.5 Density operators

3.5.1 Pure and mixed states

Recall from Eq. (3.2) that a quantum system state vector is given by:

|ψ⟩ =
∑
i

ci |ei⟩ .

We have what is called a pure state. This means that we can say with statistical certainty
that our system is in state |ψ⟩, i.e., we have a complete knowledge of the system state.
In practice, however, quantum systems are hard to isolate, and hence often are entangled
with their environment. As a consequence, when we get our system, we cannot be certain
about its state. Instead, we have to describe the system as a probabilistic combination
of all the pure states it could possibly have been prepared in:

|ψ⟩ =


|ψ0⟩ , with probability p0
|ψ1⟩ , with probability p1
· · ·
|ψk⟩ , with probability pk

,

where {|ψi⟩} are pure states and {pi} are the probabilities associated with each state.
The sum of the probabilities of all possible states is equal to unity. The state |ψ⟩ is
written as {pi, |ψi⟩} and is called an ensemble of pure states or a mixture of pure states.
More rigorously: a mixed quantum state is a statistical ensemble of pure states.

As we discussed above, one situation where mixed states could arise is when the prepara-
tion of the system is not fully known, and thus one must deal with a statistical ensemble
of possible preparations. Another situation is when one wants to describe a quantum
system which is entangled with another system. As mentioned in Sec. 3.3, describing an
entangled system by listing the state vectors of each of the qubits is impossible. We will
shortly see that the state of each qubit can actually be described as an ensemble of pure
states.

Consider the Bell state from Eq. (3.8):

|ψBell⟩ =
1√
2
|00⟩+ 1√

2
|11⟩ .

38

Recall that the result of measuring the first qubit in the computational basis has a 1
2

chance of being 0 and 1
2

chance of being 1. Recall also that, for this Bell state, measuring
the first qubit results in collapsing the second qubit as well. Suppose we perform a
measurement on the first qubit, but we do not know the result. The state of the second
qubit fully depends on the measurement of the first qubit, and has a 1

2
chance of being

|0⟩ and 1
2

chance of being |1⟩. Note that this does not mean that our second qubit is in
a superposition of the two states |0⟩ and |1⟩. Being in a superposition means that the
particle is in both states simultaneously, and only upon measurement collapses into one
of the states. Rather, our particle has collapsed into one of the two states, but we do not
know which one. Thus, the state of the second qubit can be described as a probabilistic
mixture of the two states |0⟩ and |1⟩:

|q2⟩ =

{
|0⟩ , with probability 1

2

|1⟩ , with probability 1
2

. (3.13)

3.5.2 The density matrix

Until now the state of a quantum system was described using a state vector. Alternatively,
the state can also be described using the density matrix. This approach is equivalent to
the state vector approach; however it is much more convenient to describe mixed quantum
states using their density matrix. The density matrix ρ for a mixed state {pi, |ψi⟩} is given
by:

ρ =
∑
i

pi |ψi⟩ ⟨ψi| . (3.14)

Using Eq. (3.14) we can see that the density matrix of a pure state is given by:

ρ =
∑
i

pi |ψi⟩ ⟨ψi| = |ψ⟩ ⟨ψ| . (3.15)

This equation allows us to give another definition a pure state. A pure state is any state
that has a density matrix of rank 1, i.e., ρ = |ψ⟩ ⟨ψ|.

In order for a matrix to be a valid density matrix it has to be a positive semi-definite
hermitian matrix with a unit trace:

ρ† = ρ, (3.16)
ρv = λv ⇐⇒ 0 ≤ λ, (3.17)
tr(ρ) = 1, (3.18)

where v is an eigenvalue of the matrix ρ.

Note that from Eqs. (3.2) and (3.14) we have:

ρuv =
∑
i

picuc
†
v =

(∑
i

pic
†
ucv

)†

= ρ†vu,

thus the density matrix is hermitian.

Additionally, for any quantum state |ϕ⟩ we have:

⟨ϕ| ρ |ϕ⟩ =
∑
i

pi ⟨ϕ|ψi⟩ ⟨ψi|ϕ⟩ =
∑
i

pi

(
⟨ϕ|ψi⟩

)2

≥ 0.

39

And for the trace of the density matrix we have:

tr(ρ) =
∑
j

ρjj =
∑
i

∑
j

pi|c(j)i |2 = 1.

To see that the density matrix formulation is equivalent to the state vector approach, we
can show that all quantum mechanical formulas and equations can be reformulated in
terms of the density matrix:

• Using Eq. (3.15) we can express the density matrix of the quantum system in the
computational basis:

|ψ⟩ =
∑
i

ci |ei⟩ ,

ρ = |ψ⟩ ⟨ψ| =
∑
ij

cic
†
j |ei⟩ ⟨ej| . (3.19)

• The density matrix of a product state is arrived at by simply taking the tensor
product between the density matrices of the individual states:

ρ|ψϕ⟩ = ρ|ψ⟩ ⊗ ρ|ϕ⟩.

• Suppose we would like to apply a gate U to a mixed quantum state {pi, |ψi⟩}. The
evolution of the density matrix can be described as:

ρ =
∑
i

pi |ψi⟩ ⟨ψi|
U−→
∑
i

piU |ψi⟩ ⟨ψi|U † = UρU †. (3.20)

• Recall that the probability of observing a given eigenvalue λj of a measurement
operator is given by the square of the absolute value of the transition amplitude
between our state vector and the eigenvector |ej⟩ of the measurement operator
corresponding to that eigenvalue. Thus, for a pure state |ψ⟩ we have:

A = ⟨ej|ψ⟩
p(λj) = |A|2 = | ⟨ej|ψ⟩ |2

= ⟨ej|ψ⟩ ⟨ej|ψ⟩†

= ⟨ej|ψ⟩ ⟨ψ|ej⟩ = ⟨ej| ρ |ej⟩ . (3.21)

This formula generalizes as well to mixed states described using their density matrix:

p(λj) =
∑
i

pi| ⟨ej|ψi⟩ |2

=
∑
i

pi ⟨ej|ψi⟩ ⟨ψi|ej⟩

= ⟨ej|
∑
i

pi |ψi⟩ ⟨ψi|ej⟩

= ⟨ej| ρ |ej⟩ . (3.22)

Looking at Eqs. (3.19), (3.21) and (3.22) we can see that measuring a state |ψ⟩ in the
standard basis results in λi with probability p(λi) = ρii = ⟨ei|ρ|ei⟩. Thus, the diagonal
entries of the density matrix give the probabilities of our system to collapse onto each of
the standard basis vectors.

40

3.5.3 Partial trace

As mentioned earlier, the subsystem of a composite quantum system can be described
using the density matrix formalism. In this case the matrix describing the subsystem
is called a reduced density matrix or a reduced density operator. Suppose we have a
composite system AB described by the density matrix ρAB and we would like to arrive
at a description for the subsystem A, that is the reduced density matrix ρA.

In order to do this we need to use a mapping called the partial trace over subsystem B:

ρA = trB(ρAB). (3.23)

The definition of the partial trace is given by the following formula:

trB(ρAB) =
∑
i

(
IA ⊗ ⟨i|B

)
ρAB

(
IA ⊗ |i⟩B

)
, (3.24)

where {|i⟩B}i is any orthonormal basis for the Hilbert space of subsystem B.

From the definition in Eq. (3.24) we can deduce the following:

• for any two vectors |a1⟩ and |a2⟩ from the state space of system A, and any two
vectors |b1⟩ and |b2⟩ from the state space of system B we have:

trB(|a1b1⟩ ⟨a2b2|) = |a1⟩ ⟨a2| tr(|b1⟩ ⟨b2|) (3.25)
= |a1⟩ ⟨a2| ⟨b1|b2⟩ ;

• the partial trace is linear, that is for any two systems ρA1 and ρA2 we have:

trB(ρA1 + ρA2) = trB(ρA1) + trB(ρA2). (3.26)

As an example, let us consider again the Bell state as a quantum system composed of
two separate particles (subsystems):

|ψ⟩Bell =
1√
2
|00⟩+ 1√

2
|11⟩

In Eq. (3.13) we tried to reason what would be a possible description for one of the qubits
of the Bell state. We did this by pretending to measure the first qubit, but without
looking at the result of the measurement. The partial trace operator does exactly the
same thing. Intuitively, we would like our reduced density matrix ρA to represent a mixed
quantum state that would reflect the outcome of all different possible measurements of
the subsystem B with their respective probabilities of occurring.

Calculating the reduced density matrix for qubit 2 we need to trace out qubit 1 using the

41

partial trace:

ρBell = |ψ⟩Bell ⟨ψ|Bell =
1√
2

(
|00⟩+ |11⟩

)
1√
2

(
⟨00|+ ⟨11|

)
=

|00⟩ ⟨00|+ |00⟩ ⟨11|+ |11⟩ ⟨00|+ |11⟩ ⟨11|
2

,

ρ2 = tr1(ρBell)

=
1

2

[
tr1
(
|00⟩ ⟨00|

)
+ tr1

(
|00⟩ ⟨11|

)
+ tr1

(
|11⟩ ⟨00|

)
+ tr1

(
|11⟩ ⟨11|

)]
=

1

2
|0⟩ ⟨0|+ 1

2
|1⟩ ⟨1| .

We can see that using the partial trace we arrive at the same expression for the second
qubit as in Eq. (3.13).

In order to understand why the reduced density matrix of a subsystem is given by the
partial trace, let us see what requirements have to be satisfied by a correctly formulated
reduced density matrix. Consider a composite system ρAB, and let ρA be the reduced
density matrix describing the subsystem A. Suppose we would like to measure some
observable M on subsystem A (e.g., the spins of all the qubits in system A). Thus, M is
the observable operator measured on the subsystem A. Let M ′ denote the corresponding
observable operator for the same measurement on the composite system ρAB. We then
have:

M ′ =M ⊗ IB.

If ρA is a correct description of our subsystem, then performing the two measurements
must produce the same measurement statistics. We therefore have:

tr
(
MρA

)
= tr

((
M ⊗ IB

)
ρAB

)
.

It turns out that this equation is satisfied by ρA = trB
(
ρAB

)
, and the partial trace is the

unique function having this property.

3.6 Quantifying quantum entanglement

To quantify the entanglement of a quantum state we will use the notion of entropy.
Entropy is a key concept of information theory. It measures the level of uncertainty in
the state of a physical system.

Given a pure state ρAB = |ψ⟩AB ⟨ψ|AB, we would like to measure the amount of entangle-
ment between the two subsystems A and B. Note that, as we showed in Sec. 3.5, each of
the subsystems is an ensemble of quantum states described by a reduced density matrix.
Thus, we could measure the level of uncertainty that is present in each of the subsystems;
that is, we measure the entropy of the ensemble state.

Given a random variable X, the entropy of X measures the amount of uncertainty about
X before we learn its value. Alternatively, we could say that the entropy of X quantifies

42

how much information we gain, on average, when we learn the value of X. The entropy
of a random variable is defined to be a function of the probabilities of the different
possible values the random variable takes, i.e., it is a function of a probability distribution
p1, p2, ..., pk:

H(X) = −
∑
x

px log(px),

where x are all the possible values for the random variable X, and px = P(X = x) is the
probability of X having value x.

Entropy measures the uncertainty associated with a classical probability distribution.
Extending the definition of entropy from probability distributions to matrices will allow
us to calculate the entropy of a quantum state described by a density matrix:

S(ρ) = −tr(ρ log ρ). (3.27)

Given a pure state ρAB = |ψ⟩AB ⟨ψ|AB, the degree of entanglement between A and B
is given by calculating the entropy of the subsystem A (or B). Using the formula from
Eq. (3.23) we obtain the density matrix for the subsystem A, and using formula Eq. (3.27)
we can calculate the entropy of that system:

Sent = −tr(ρA log ρA) = −tr(ρB log ρB).

43

Chapter 4

The multi-qubit system disentangling
problem

In this chapter we introduce the problem of disentangling a quantum system. A definition
of disentanglement is given in Sec. 4.1. In Sec. 4.2 we show a practical implementation of
how quantum gates are applied. In Sec. 4.3 we give a procedure for computing a quantum
gate that applies the maximum local reduction to the entanglement. Quantum systems
of 2-qubit and 3-qubit quantum states have exact solutions, which are shown in Sec. 4.4.
Finally, in Sec. 4.5 we introduce the problem that we will be solving in this work.

4.1 Fully separable system

The problem that we will try to solve in this work is to come up with an algorithm
for reducing the entanglement of a quantum state, i.e., we would like to disentangle a
quantum state.

In Sec. 3.6 we saw that given a pure quantum state |ψ⟩ we can decompose the state
into two subsystems A and B, and we can calculate the entanglement between these
two systems. A different decomposition of the state into two different subsystems C
and D would yield a different value for the degree of entanglement between these two
subsystems.

If for a given decomposition the entanglement is zero, then our initial quantum state can
be represented as a product state between the states of the two subsystems:

|ψ⟩AB = |ψ⟩A ⊗ |ψ⟩B ⇐⇒ S(ρA) = S(ρB) = 0.

As an example, consider a 4-qubit state, and let subsystem A = {1, 2} consist of qubits 1
and 2, and subsystem B = {3, 4} consist of qubits 3 and 4. Suppose that the entanglement
between subsystems A and B is equal to zero, i.e., S(ρA) = 0. This means then, that our
initial 4-qubit state can be separated into two 2-qubit states.

As another example, let A = {1}, B = {2, 3, 4}, and S(ρA) = 0. This means that qubit 1
is not entangled with the other qubits and can be separated from the rest of the system.

Continuing in this fashion, we can define a fully separable state to be such quantum
state that for an arbitrary decomposition into two subsystems A and B the entanglement

44

Figure 4.1: Decomposition of a quantum system into subsystems. There are multiple ways to
decompose a quantum system into sub-systems. If the entanglement between subsystems A and
B is zero, then the quantum system is in a product state between these two systems.

between these two systems is zero. Or, put in other words, any group of qubits can be
separated from the rest of the system. Another way to describe a fully separable state
is to say that an n-qubit state is fully separable if and only if it is a product state of n
one-qubit states:

|ψ⟩ = |ϕ1⟩ ⊗ |ϕ2⟩ ⊗ ...⊗ |ϕn⟩ ,

where |ϕi⟩ is a single-qubit state ∀i.

Thus, in order for an n-qubit state to be fully separable, we need to have the entanglement
between the subsystems A = {i} and B = {1, 2, ..., i− 1, i+ 1, ..., n} to be equal to zero,
for all i = 1, 2, ..., n. In order to have a measure for how close a quantum state to a fully
separable state is we define the average entanglement of a quantum state:

Savg(|ψ⟩) = − 1

N

N∑
i=1

tr(ρ{i} log
(
ρ{i}
)
. (4.1)

It should be noted that as the number of qubits in the system grows, perfectly separating
a qubit from the system becomes notoriously hard. Thus, when we talk about separating
a qubit from the system, we will be aiming at reducing the entanglement of that qubit
with the rest of the system below a given threshold ϵ. We will consider a quantum state
to be disentangled if all qubits are separated up to ϵ from the rest of the system. For the
purposes of this work we set the threshold value to ϵ = 10−3.

The task at hand is to come up with an algorithm that for an arbitrary quantum state can
produce a sequence of quantum gates to be applied to that state such that the resulting
quantum state is disentangled.

45

4.2 Applying quantum gates

In Sec. 3.4 we mentioned that in order for a gate to be able to modify the degree of
entanglement between qubits in a quantum state, this gate must be a multi-qubit gate
that is not a tensor product of single-qubit gates. In this work we will only consider
applying two-qubit quantum gates to modify entanglement. In fact it can be shown that
any multi-qubit gate can be simulated by applying multiple two-qubit gates.

Recall, that applying a quantum gate to a state is described by performing matrix mul-
tiplication between the quantum gate and the state vector:

|ψ⟩ U−→ |ψ′⟩ , U |ψ⟩ = |ψ′⟩ .

Working with an n-qubit state we can see that this results in a vector-matrix multiplica-
tion of size 2n. The complexity of performing such an operation is O(22n). Note, however,
that we want to apply a two-qubit gate, say V4×4. Thus, the gate U will be arrived at by
taking the tensor product between V and the identity operator for the rest of the system:

U = V ⊗ I2n−2 .

We can take advantage of this and re-arrange the matrix multiplication in order to reduce
the cost of computing. Let

V =


a b c d
e f g h
i j k l
m n o p

 .
Then, after expressing the matrix U in block from, we arrive at the following for the
vector-matrix multiplication:

U |ψ⟩ =


aI2n−2 bI2n−2 cI2n−2 dI2n−2

eI2n−2 fI2n−2 gI2n−2 hI2n−2

iI2n−2 jI2n−2 kI2n−2 lI2n−2

mI2n−2 nI2n−2 oI2n−2 pI2n−2





q0
q1
...
...
...
...

q2n−2

q2n−1



Q1
2n−2}

Q2
2n−2}

Q3
2n−2Q4
2n−2

.

If we imagine decomposing the state vector |ψ⟩ into 4 blocks of size 2n−2 we arrive at:

U |ψ⟩ =


aI2n−2 bI2n−2 cI2n−2 dI2n−2

eI2n−2 fI2n−2 gI2n−2 hI2n−2

iI2n−2 jI2n−2 kI2n−2 lI2n−2

mI2n−2 nI2n−2 oI2n−2 pI2n−2



[
Q1

][
Q2

][
Q3

][
Q4

]
 =


[
aQ1 + bQ2 + cQ3 + dQ4

][
eQ1 + fQ2 + gQ3 + hQ4

][
iQ1 + jQ2 + kQ3 + lQ4

][
mQ1 + nQ2 + oQ3 + pQ4

]


2n

.

(4.2)

Note that the final result is a vector represented in block form. However, looking at
Eq. (4.2), we can see that if we simply reshape the state vector into a matrix of shape

46

4 × 22
n−2, then we can perform a much cheaper matrix-matrix multiplication. Finally,

the resulting matrix has to be reshaped back into a 2n-dimensional vector:

|ψ⟩ reshape−→




q0 · · · q2n−2−1 Q1

q2n−2 · · · q2n−1−1 Q2

q2n−1 · · · q2n−1+2n−2−1 Q3

q2n−1+2n−2 · · · q2n−1 Q4

= Ψ, (4.3)

VΨ =


a b c d
e f g h
i j k l
m n o p



Q1

Q2

Q3

Q4

 =


aQ1 + bQ2 + cQ3 + dQ4

eQ1 + fQ2 + gQ3 + hQ4

iQ1 + jQ2 + kQ3 + lQ4

mQ1 + nQ2 + oQ3 + pQ4


4×2n−2

,

VΨ
reshape−→ U |ψ⟩ .

Simulating the application of quantum gates using the procedure from Eq. (4.3) results in
sixteen scalar-vector multiplications of size 2n−2. Thus, the complexity of performing
this operation is O(16×2n−2) ∈ O(2n). The complexity class is still exponential, which is
normal considering the fact that we are trying to simulate a quantum system. However,
the reduction from O(22n) to O(2n) is enormous and results in a massive speed up when
applied in practice.

4.3 Locally optimal gates

Since we are only concerned with applying two-qubit gates, at each step our algorithm
needs to produce the indices of the qubits, {i, j}, to which a gate is applied. We need to
specify the quantum gate itself as well.

Applying a quantum gate to qubits i and j of a quantum state |ψ⟩ can modify the
entanglement of only these two qubits, and the amount with which the entanglement is
modified depends on the specific gate that is selected. Given that the goal is to reduce
the entanglement to zero, it seems natural to try to find a gate that applies a maximum
reduction to the entanglement of each of the two qubits.

Starting with the reduced density matrix for the subsystem A = {i, j}, ρA (Eq. (3.23)),
we show an algorithm for arriving at a gate that is guaranteed to reduce the entanglement
of at least one of the qubits.

First, let us consider what happens when a two-qubit quantum gate U is applied to our
quantum state |ψ⟩:

|ψ′⟩ = (U ⊗ IB) |ψ⟩ ,

where B = {1, 2, ...n}\{i, j} is the subsystem of all the other qubits except i and j.

Then, using Eq. (3.24) for the reduced density matrix of subsystem A of the new quantum

47

state we get:

ρ′ = (U ⊗ IB) |ψ⟩ ⟨ψ| (U ⊗ IB)
†

ρ′A = trB(ρ′)

=
∑
i

(
IA ⊗ ⟨i|B

)
ρ′
(
IA ⊗ |i⟩B

)
=
∑
i

(
IA ⊗ ⟨i|B

)
(U ⊗ IB)ρ(U ⊗ IB) †

(
IA ⊗ |i⟩B

)
=
∑
i

U

(
IA ⊗ ⟨i|B

)
ρ

(
IA ⊗ |i⟩B

)
U †

= UρAU
†

Thus, when considering the evolution of the reduced density matrix ρA, we can see that
applying a quantum gate U to qubits i and j will transform ρA into UρAU †.

What we did is to come up with a quantum gate U such that it reduces the entanglement
between the qubit i and the rest of the system B′ = {1, 2, ..., i−1, i+1, ..., n}. To calculate
the entanglement between the systems A = {i} and B′ we need to trace out qubit j from
ρA:

ρi = trj(ρA),

S(ρi) = −
∑
k

ηk log ηk,

where {ηk} are the eigenvalues of the reduced density matrix ρi.

Following Eq. (3.18) the sum of the eigenvalues is equal to unity. We can see that having
the eigenvalues approximately equal provides for the highest entanglement between the
systems A and B′, while having all the mass concentrated in one eigenvalue provides for
the lowest entanglement.

Note that the matrix ρA is diagonalizable and can be written as:

D = PρAP
†,

where:

D =


λ0 0 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ3

 ,
is a diagonal matrix constructed from the eigenvalues λi of ρA, and P is the matrix
composed of the eigenvectors of ρA.

The reduced density matrix for the qubit i is then:

ρi = trj(D) =

[
λ0 + λ1 0

0 λ2 + λ3

]
,

and the entanglement is computed as:

S(ρi) = −(λ0 + λ1) log(λ0 + λ1)− (λ0 + λ1) log(λ0 + λ1).

48

The eigenvalues λ0 and λ1 effectively represent qubit i, while λ2 and λ3 – qubit j. We
modify the eigenvalues in such a way that the mass is shifted toward qubit i effectively
reducing the entanglement between systems A and B′. The modification is applied in the
form of a swap matrix that arranges the eigenvalues in ascending order: We can see that
having the shifting the mass

D∗ = SDS† =


λi 0 0 0
0 λj 0 0
0 0 λk 0
0 0 0 λl

 , λi ≤ λj ≤ λk ≤ λl.

The gate that is applied to qubits i and j will be:

U = PS, (4.4)

where P is the matrix composed of the eigenvectors of the reduced density matrix ρA,
and S is a swap matrix that arranges the eigenvalues in ascending order. This is a valid
quantum gate since it is a product of two Hermitian matrices.

The effect of this gate will not modify the eigenvalues of the reduced density matrix ρA;
instead, it will simply ensure that they are arranged in ascending order. This property
will ensure that the entanglement S(ρi) between qubit i and the rest of the quantum
system is decreased.

Note that for the entanglement S(ρj) = S(tri(ρA)) between qubit j and the rest of the
quantum system we cannot guarantee that it will be reduced. Instead of the swap matrix
S, there are different Hermitian matrices that could be applied that shift the mass towards
one or the other qubits. During our experiments, however, we found that the matrix S
applies the maximum amount of reduction to the joint quantity S(ρi)+S(ρj). We have no
proof that the gate given in Eq. (4.4) is the gate that applies the maximum reduction to
the entanglement between qubit i and subsystem B′. However, based on the experiments
that we performed we are inclined to make the following:

Conjecture 1 The two-qubit quantum gate given in Eq. (4.4) is locally optimal in a
sense that when applied to qubits {i, j} of an n-qubit quantum state |ψ⟩ it will apply
the maximum reduction of entanglement between qubit {i} and the rest of the system
B′ = {1, 2, ..., i− 1, i+ 1, ..., n}.

Thus, in this work the gate given in Eq. (4.4) is used.

As mentioned in the previous section, the task is to come up with a sequence of two-qubit
quantum gates to be applied such that the system results in a disentangled quantum
state. We now have a procedure for determining a locally optimal two-qubit quantum
gate U(|ψ⟩ , i, j) to be applied to a given quantum state |ψ⟩ given the pair of qubits to
which we want to apply it.

Given a quantum state |ψ⟩ and a pair of qubits {i, j} to which to apply a quantum gate
we now have a procedure for determining a locally optimal gate U(|ψ⟩ , i, j). This means
that all we have to do at each step is to choose a pair of qubits to which the gate should
be applied. Thus, for an n-qubit quantum state, at each step we have to choose one from
V 2
n = n(n − 1) different pairs of qubits, and after that apply the resulting optimal gate

to that pair. We are considering all possible variations because choosing the pairs {i, j}

49

Figure 4.2: Action selection and action application. After the agent selects the two qubits {i, j},
we calculate the locally optimal quantum gate using Eq. (4.4) and apply it to those qubits.

and {j, i} are two different actions. The ordering effectively indicates towards which of
the two qubits, i or j, the entanglement is shifted.

Note that the procedure for calculating the optimization gate depends entirely on the
fact that there exists an ordering between the eigenvalues λ0, ..., λ3 of ρA. It may be the
case, however, that we arrive at a maximally mixed state and the reduced density matrix
is proportional to the identity matrix, ρA ∝ I. In this case applying the quantum gate
calculated using Eq. (4.4) will have no effect on the entanglement of the quantum sate.
Nevertheless, this would mean that there exists a different a qubits, say {k, l}, for which
the mass of the eigenvalues is maximally shifted towards one of the qubits. This effect is
due to the so-called Monogamy of entanglement.

4.4 Exact solutions

To provide an algorithm for disentangling a quantum state, at every step of the sequence
we will apply the quantum gate given by Eq. (4.4) to the selected qubits i and j.

4.4.1 Two-qubit states

Before considering how we could solve multi-qubit systems with a large number of qubits,
let us first examine the most basic case, which is a quantum state of two qubits. There
is only one action we can take and that is to apply the optimal gate to qubits 0 and 1.

The formula for the locally optimal gate in Sec. 4.3 was derived by considering an arbitrary
mixed quantum state with density matrix ρ. However, in this case we have a pure state.
This means that the eigenvalues of the density matrix ρ are λ0 = 1, λ1 = λ2 = λ3 = 0.
For the entanglement between the two qubits after applying the optimization gate we

50

Figure 4.3: Solutions for 2-qubit quantum states.

have:
S(ρ1) = 0.

From here we can see that a two-qubit quantum state can actually be disentangled with
the help of a single quantum gate. Thus, there are two different solutions to the problem
in this case:

4.4.2 Three-qubit states

In the case of a three-qubit state we need to apply the locally optimal quantum gate
to a pair of qubits, say i and j. Thus, we consider the reduced density matrix ρA that
describes the subsystem of qubits A = {i, j}. Since we are tracing out only one qubit,
subsystem A will be an ensemble of two two-qubit states:

|ψ⟩A =

{
|ψ0⟩ , with prob. p0 equal to the prob. of measuring qubit k as 0;

|ψ1⟩ , with prob. p1 equal to the prob. of measuring qubit k as 1.

Hence, for the reduced density matrix we have:

ρA = p0 |ψ0⟩ ⟨ψ0|+ p1 |ψ1⟩ ⟨ψ1| .

Thus, our reduced density matrix has two non-zero and two zero eigenvalues. Once again,
for the entanglement between the two qubits after applying the gate we have:

S(ρi) = 0.

This means that applying a single quantum gate would separate qubit i from qubit j.
However, this actually means that one of the two qubits will be separated from the entire
system. To see why this is true let us assume that after the gate is applied both qubits i
and j are still entangled to qubit k. Then our quantum state |ψ⟩ is not a product state.
But if we trace-out qubit k we will arrive at a product state, since qubits i and j are
disentangled, which is a contradiction.

Following that we can apply the optimization quantum gate for the remaining two qubits
and, with this, disentangle the entire quantum state. Thus, we can see that we can
disentangle any three-qubit quantum state with applying just two quantum two-qubit
gates. It is obvious from the discussion so far that the choice of qubit is irrelevant, which
means that there are:

V 2
3 × C2

3 =
3!

1!

3!

2!1!
= 18,

51

different solutions to the problem. Here V k
n gives all the k-element variations from an

n-element set, and Ck
n gives all the k element combinations from an n-element set.

Figure 4.4: Solutions for 3-qubit quantum states. The figure shows only a general pattern for
arriving at a solution for 3-qubit quantum states. All solutions to the 3-qubit quantum state
are permutations of the solutions given on the figure.

4.5 The optimization problem

As mentioned in Sec. 4.1 the problem that we will try to solve is to come up with
an algorithm for disentangling arbitrary quantum states. That is, the algorithm must
produce a sequence of quantum gates which disentangles the initial quantum state.

In Sec. 4.3 we proposed a procedure for calculating the matrix representation of the
quantum gate to be applied, given the indices of the qubits to which it will be applied.
Thus, our algorithm needs to produce a sequence of decisions, where each decision is a
pair of indices indicating the two qubits for which a gate should be calculated and applied
at the given step.

Note that applying the quantum gate calculated using Eq. (4.4) guarantees that the en-
tanglement in the entire quantum system is reduced. Thus, we could simply try to naively
disentangle the system by selecting qubit pairs at random and applying the respective
quantum gates. As it turns out (see Sec. 6.1), this will yield a solution to the problem,
albeit not a very efficient one. Most of the quantum gates selected following this naive
approach, even though reducing the entanglement, are completely unnecessary and can
be skipped. Thus, we will be interested in finding a sequence that is (near-)optimal in
terms of length.

The problem that we want to solve can be formulated as follows:

Problem 1 Find an algorithm such that, given an arbitrary quantum state |ψ⟩, the al-
gorithm produces a sequence of actions, reducing the entanglement of every qubit
{S(ρ1), S(ρ2), ..., S(ρn)} (Eq. (3.27)) of the state below a given threshold ϵ = 10−3. The
actions that are produced are pairs of indices indicating the two qubits to which a lo-
cally optimal quantum gate (Eq.(4.4)) should be applied. The sequence produced by the
algorithm must be (near-)optimal in terms of its length.

52

Chapter 5

Controlling quantum entanglement
using deep reinforcement learning

In this chapter we describe how we model the problem in the framework of RL (Rein-
forcement learning). In Sec. 5.1 we pose the problem as an optimization problem. In
Sec. 5.2 we describe how we set up the reinforcement learning environment. An opti-
mization procedure for the agent-environment loop using parallelism is given in Sec. 5.3.
And in Sec. 5.4 a definition of an agent is given.

5.1 Optimization using learning

As explained in Sec. 4.3 our algorithm produces a sequence of actions, where each action
gives the indices of the two qubits to which we apply the calculated quantum gate using
the procedure from Eq. (4.4).

The problem that we try to solve is to optimize the number of actions taken to disentangle
a quantum state. Tree search algorithms such as A∗ are known to be able to produce
an optimal solution to such kind of combinatorial problems; however these algorithms
run exponentially slow (w.r.t. the sequence length). Another downside of tree search
algorithms is that they are not able to generalize at all. Thus, knowing the solution to
one quantum state does not help in any way when searching for the solution for another
very similar quantum state. Search algorithms are discussed in Sec. 6.2.

In this thesis we show that we can leverage the generalization capabilities of neural
networks. However, in order to train a network using supervised learning we need training
data. That is, we need to know the solutions to a finite amount of quantum states, and
then train the network on these solutions. In general, we do not have access to training
data with optimal solutions. Nevertheless, we can generate near-optimal solutions using
a local search algorithm and train a neural network on these solutions. This approach is
further discussed in Sec. 6.3.

The results from training using supervised learning show that the model is not gener-
alizing well to out-of-data examples. In addition, due to the sequential nature of the
problem, the performance of the model on the disentangling task is poor. Another ap-
proach that we take is to treat the problem as a MDP (Markov decision process) and
solve it using RL (Reinforcement learning). Using RL is better suited for learning to

53

Figure 5.1: RL Agent training loop. The procedure starts with resetting the environment state.
After that a number of rollout simulations are performed and the generated episodes are saved.
Finally, the agent updates the policy parameters using the policy gradient update rule described
in Sec. 2.1.4

solve sequential problems and greatly improves the results from the training. Training
using RL is discussed in Sec. 6.4.

5.2 Reinforcement learning setup

The process of disentangling a quantum state is modelled using an agent-environment
loop. We have an agent (e.g., a neural network, or a tree search algorithm) interacting
with the environment (the quantum state) and trying to achieve a fixed goal – to dis-
entangle the state. Using this setup we test and compare agents trained using different
approaches. We examine different approaches for training the neural network model and
we compare the different models by running an agent-environment loop and observing
how well the agent behaves. The two key components – the agent and the environment,
are now described in detail. Comparisons of different agents is given in Sec. 6.

5.2.1 Simulation environment

The environment for our problem is a physical simulation of a quantum system. As
explained in Sec. 3.3, we model the state of a quantum system using tensors defined over
the set of complex numbers – a quantum state of n qubits is a C2 ⊗ C2 ⊗ ...⊗ C2︸ ︷︷ ︸

n times

tensor.

Applying quantum gates is modelled by performing matrix multiplication between the
current state and the quantum gate.

Fig. 5.1 shows the training process using the simulation environment. At the beginning

54

1 class Environment:
2 def state(self):
3 """ Return the state of the environment."""
4 // ...
5 return self.state
6
7 def actions(self):
8 """ Return a list with the actions."""
9 // ...

10 return self.actions
11
12 def step(self , action):
13 """ Perform the selected action and transition the
14 environment to the resulting state.
15 """
16 // ...
17 return (next_state , reward , done)
18
19 def reset(self , action):
20 """ Reset the quantum state to be ready for a new
21 agent -environment loop.
22 """
23 // ...
24 return self.state
25
26 def entanglement(self):
27 """ Return the average entanglement of the
28 current state.
29 """
30 // ...
31 return entanglement

Code 5.1: Interface for the environment object. The environment simulates a quantum system
and is used for training an RL agent. The concrete implementation of the environment follows
the interface shown. An implementation of the environment can be found on https://github.
com/cacao-macao/entanglement-control.

of every rollout the state of the environment is reset to the initial state |ψ0⟩. Usually,
environments have a well defined initial state. A given environment might have only one
possible or multiple initial states. In our case the environment has no specific initial state.
Given that the goal is to have an agent that can disentangle an arbitrary quantum state,
it seems natural the initial state of the environment to be simply a random quantum
state.

At every iteration of the agent-environment rollout the agent will select an action at to
be applied, that is the agent will select the indices of the two qubits {i, j} to which it
wants to act. After the indices are selected the environment will calculate the vector
form of the quantum gate to be applied using the Eq. (4.3) and it will apply that gate to
the selected qubits. After the action is applied, the state |ψt⟩ of the environment will be
changed to the new state |ψt+1⟩ resulting from the application of the quantum gate.

After the agent performs multiple rollouts the weights of the policy are updated using
the procedure described in Sec. 2.1.4.

In order to keep track of the progress of the agent, during the rollout we query the envi-
ronment for the value of the entanglement of the current state. Since the entanglement

55

https://github.com/cacao-macao/entanglement-control
https://github.com/cacao-macao/entanglement-control

is a mathematical property of the quantum state, we implemented a procedure that cal-
culates the value using Eq. (4.1) and returns it. An overview of the interface of the
environment is given in Code 5.1.

5.2.2 State space

As explained in Sec. 3.2, quantum states are represented by tensors of complex num-
bers. However, most frameworks for training deep neural network models [23, 24] are
implemented to operate on real numbers. For this reason we implemented a procedure
for bi-directional mapping M between complex tensors and real tensors. The proce-
dure works by simply concatenating the real part and the imaginary part of the complex
tensor. Given, a complex tensor:

C = A+ iB,

we construct the real mapping by stacking together the tensors A and B:

M(C) =

[
A
B

]
.

Note that, according to Eq. (3.3) states that differ by a global phase are physically equiva-
lent. Thus, they cannot be distinguished from one another by any physical measurement.
The agent, however, observes the internal representation of the quantum state and will
be able to distinguish between states that differ by a global phase. For this reason states
are ‘phase-normalized’ before they are input through the neural network. Thus, every
quantum state is shifted by a global phase so that the component along the |00 . . . 0⟩
standard basis vector is a real number:

|ψ⟩ = c0 |00...00⟩+ c1 |00 . . . 01⟩+ · · ·+ c2n−1 |11 . . . 1⟩
γ = −Arg(c0)

|ψ⟩norm = eiγ |ψ⟩ ,

where Arg(c0) = arctan
Re(c0)
Im(c0)

.

5.2.3 Action space

The actions to be selected by the agent are pairs of indices indicating which two qubits
should the calculated quantum gate be applied on. Thus, the action space is the set
of all variations of two qubit indices. For a quantum state of n qubits this means that
the action space is O(n2). The downside of using this action space is that it increases
polynomialy with the size of the system. However, for relatively small quantum states
(e.g. 10-15 qubits) this is manageable.

Note that the action space consists of all variations instead of all combinations. This
is due to the fact that selecting indices (i, j) is different from selecting indices (j, i), as
discussed in Sec. 4.3.

56

5.2.4 Reward

The reward function that we use is to penalize the agent for every action that is performed
with a reward of −1, and we give a positive reward only when the state is disentangled.
The value for the positive reward is discussed in Sec. 6.4. This type of reward function
directly specifies our goal – disentangle the quantum state while using as few actions as
possible. However, rewards that carry any meaningful information are relatively rare,
because only when a state is disentangled does the agent receive positive feedback. If, for
example, the agent chooses a few good actions, but then fails to disentangle the state, the
entire sequence of actions will be penalized. In order to solve this problem we decided to
train with longer episodes, thus allowing the agent to achieve the reward more frequently.

When selecting the rewards for this problem we experimented with a few different vari-
ants. We tried to make the reward a function of the current average entanglement of
the quantum state (see the definition of average entanglement in Eq. (4.1)). Using the
entanglement of the system directly as feedback reward would provide for a very efficient
training of the agent. The reward achieved at every step carries information how good
was the action that was taken.

The first function that we tested was:

R(st) = −Savg(st).

What we saw was that the agent was learning how to disentangle the system up to
some point and after that it could not learn how to continue reducing the entanglement.
The reason for this was the fact that the reward was proportional to the entanglement,
and when the entanglement of the state was small any further reductions yielded small
rewards. To fix this issue we came up with a non-linear function relation between the
entanglement and the reward:

R(st) = − logSavg(st).

Using this function we managed to train an agent to disentangle quantum states, however
we saw that often longer disentangling sequences were yielding higher returns values than
shorter sequences. Thus, using this reward function would induce bias in the training of
the agent, favoring reducing the average entanglement faster instead of disentangling the
state faster.

5.3 Parallel simulation

During RL training, the agent performs numerous interactions with the environment via
the agent-environment loop. At every iteration of the loop the system state is reset and
the agent starts the interaction producing a sequence of (state, action) pairs (called an
episode). In order for the agent to improve the policy model it needs to perform a huge
amount of episodes, thus the runtime complexity of this procedure should be sufficiently
optimized.

Note that generating interaction episodes is inherently parallel as there is no relation be-
tween two different agent-environment loops. In addition to that, the training algorithm
described in Sec. 2.1.4 performs multiple interaction episodes before every update of the

57

Figure 5.2: Comparison of parallel and sequential rollout. Parallel execution is performed with
batches of different sizes. The average time to execute a single action on a single state is
calculated for both parallel and sequential execution and the ration is plotted along the y-axis.
Using parallel execution leads to 5x- to 10x-increase in the runtime. The test was performed on
an Intel-Core i7-11800H processor.

Figure 5.3: Multiple agent-environment loops in parallel. Every state visited during rollout is
stored in a rectangular tensor form (see Eq. (3.3)). The states are batched together in a 2-
dimensional table. All episodes in the batch must have the same length. Episodes that finish
earlier are padded with a dummy state.

policy of the agent. Thus, we run different agent-environment loops in parallel, and once
all episodes finish we perform a synchronous update of the parameters of the policy.

Recall that, executing an action boils down to applying linear algebraic operations, thus
the application of multiple actions on different quantum states is simply batched together

58

1 class Policy:
2 def get_action(self , state):
3 """ Given the current state return a probability
4 distribution over the action space.
5 """
6 // ...
7 return probs

Code 5.2: Interface for the policy object. The policy processes the input quantum state and
produces an action with which the agent should act. An implementation of the policy can be
found on https://github.com/cacao-macao/entanglement-control.

and executed in parallel on different cores of the CPU or the GPU.

The quantum state simulator environment is designed to simulate a batch of quantum
states, each state having the same number of qubits. The environment also supports
parallel execution of actions on all the states in the batch. A simple comparison between
the execution times of the parallel and the sequential environments on a CPU is shown
on Fig. 5.2 revealing a 5x- to 10x-increase in computation times. Note that deep learning
frameworks provide the possibility to forward batches through the neural network out of
the box. Thus, our agents can simply forward the entire batch of quantum states through
their policy model.

One downside of using a batched environment is that episodes running in parallel must
have the same length. This means that even if one of the quantum states of the batch is
disentangled, the agent must keep selecting actions for that state until the entire batch of
episodes is finished. However, if the episode length needed to disentangle one of the states
from the batch is too long, then this causes a computational overhead that is proportional
to the batch size. To solve this problem we decided to use episodes with fixed lengths
instead of running episodes until the state is disentangled. A discussion on selecting a
suitable value for the episode length can be found in Sec. 6.1.

5.4 Agent

An agent is modelled as a composite entity consisting of a policy object and an environ-
ment object. The policy is an implementation of the prescription given in Sec. 2.1.3. It
takes as input a quantum state and produces a probability distribution over the action
space. The interface for the policy is shown in Code 5.2.

In our case the policy is a neural network model that is trained in order to improve its
performance and ultimately produce optimal sequences for disentangling quantum states.
In order to improve the policy the agent implements a training procedure that performs
agent-environment loops and updates the policy. Different algorithms for updating the
policy are given in Sec. 2.1.4, 2.2. When interacting with the environment, the agent
queries its policy in order to select the action with which to act. The interface of the
agent is shown in Code 5.3.

59

https://github.com/cacao-macao/entanglement-control

1 class Agent:
2 env = Environment ()
3 policy = Policy ()
4
5 def rollout(self , steps):
6 """ Perform a rollout of length ‘steps ‘ or until the
7 quantum system is disentangled. Use the current policy
8 to select actions.
9

10 Return the states and actions produced during the
11 episode rollouts.
12 """
13 // ...
14 return states , actions
15
16 def train(self , num_iters , steps , hyperparameters_config):
17 """ Train the policy for ‘num_iters ‘ iterations.
18 At every iteration perform a rollout of length
19 ‘steps ‘ and update the weights of the policy.
20 """

Code 5.3: Interface for the agent object. The agent is composed of a policy and an environment
object. The agent trains the policy by performing agent-environment loops and updating the
weights of the model. An implementation of the agent can be found on https://github.com/
cacao-macao/entanglement-control.

60

https://github.com/cacao-macao/entanglement-control
https://github.com/cacao-macao/entanglement-control

Chapter 6

Artificial intelligence agents: training
and results

In this section we give an overview of the different artificial intelligence agents that we
tested and the results that we achieved. In Sec. 6.1 we discuss the most basic agent – the
random agent. Section 6.2 provides a discussion about a classical search algorithm agent.
Training an agent using supervised learning is discussed in Sec. 6.3 and training using
reinforcement learning is discussed in Sec. 6.4. In Sec. 6.5 we propose an approach for
pre-training agents combining the ideas of supervised learning and reinforcement learning.

6.1 Random agent

The first algorithm that we will discuss is the random agent. A random agent is an agent
that uses a policy which selects actions from the action space uniformly at random. Due
to the design of the quantum gate calculated using the procedure from Sec. 4.3, selecting
actions at random actually yields a solution to the problem. However, as we will see
shortly, this solution produces a lot of redundant actions, thus, significantly extending
the length of the solution sequence.

The performance of the random agent is studied in order to understand the complexity of
the problem and to try to come to a conclusion about the expected episode lengths. Figure
6.1 shows how the entanglement of a quantum state changes when the agent follows the
uniform random policy. The experiment considers quantum states of n = 5, 6, 8, 10, 12
qubits. For every value of n the agent is given a batch of b = 2048 quantum states of n
qubits and the value of the average entanglement 1

b

∑b
i=1 Savg(|ψi⟩) of the entire batch is

plotted for every step of an episode rollout. We can see that an agent selecting actions
at random is perfectly capable of disentangling a quantum state. However, the number
of actions required to reach a certain threshold for the entanglement grows exponentially
with the system size.

The analysis of Fig. 6.1 shows that the number of actions needed to disentangle a quantum
system grows exponentially with the number of qubits: T ∈ O(en). Although the random
agent is very inefficient in the action selection, more sophisticated algorithms also yield
solutions that are likely in the exponential class O(en). This leads us to the following:

61

Figure 6.1: Random agent performance. This figure shows the average entanglement at every
step of an episode rollout for quantum states of different sizes. Episode lengths increase expo-
nentially with the size of the system. The number of steps is shown along the x-axis and is
plotted on a logarithmic scale. For every system size the values are averaged over a batch of
b = 2048 different states of that size.

Conjecture 2 The length of the optimal solution Topt to the disentangling problem 1 is
exponential with respect to the number of qubits.

As explained in Sec. 5.3 we have to select a suitable value for the episode length when
using a batch of quantum states for parallel rollouts. Note that at the begining of the
training procedure our the policy of the agent is initialized with random weights. Thus,
the behaviour of the agent is similar to the random agent. The process of selecting the
most suitable episode length is iterative and is based on trial and error. As a first iteration
for the episode lenght we select the average number of steps needed by the random agent
to disentangle a quantum system.

6.2 Search agent

Given the combinatorial nature of the problem at hand a class of algorithms suitable
for solutions are tree-search algorithms. A search agent is an agent that uses a tree-
search procedure to find a sequence of actions that disentangles a quantum state. We call
the resulting sequence a plan. During the agent-environment loop, instead of querying
a policy, our search agent selects the next action from the plan that was constructed
beforehand. Note that using a plan during agent-environment loop is only possible for
deterministic environments. In case the environment is non-deterministic (due to noise
for example), using the plan from the tree-search algorithm is not certain to lead to a
solution.

The first algorithm that we test is a brute-force search algorithm. However, running
brute-force search is only possible for very small problems, and thus we are able to arrive
at a solution only for quantum systems of size n = 3, 4 qubits. In the case of n = 3 qubits

62

we verified the results that we derived in Sec. 4.4.2.

The solution to a 4-qubit quantum state was quite interesting and deserves another work
dedicated specifically to that problem. We found that any 4-qubit quantum state can be
disentangled using a sequence of at most 5 actions. We are convinced that a mathematical
proof can be given showing how these solution sequences are produced. However, this is
beyond the scope of this work.

Note that the number of all possible T -step sequences of actions is dT , where d = |A|
is the number of different actions. For our problem the number of actions is equal to
n(n−1), where n is the number of qubits in the quantum state. Thus, in order for brute-
force search to find an optimal solution, it has to check

∑T
i=1 n

i(n − 1)i ∼ n2T different
sequences. Thus, brute-force runs in O(n2T) time. For a 4-qubit state we saw that the
required sequence length is T = 5. This means that the search algorithm tried around
410 = 1048576 different trajectories before it found the solution. In the case of a quantum
state of 5 qubits the number of actions needed to disentangle the state is around T ∼ 16.
For the case of a quantum state of 6 qubits this number is around T ∼ 50. These numbers
were experimentally observed using a local search algorithm as described in Sec. 6.2.

of qubits n = 4 n = 5 n = 6

of steps T = 5 T = 16 T = 50

of sequences 1.05× 106 2.33× 1022 6.53× 1077

Table 6.1: Expected number of different trajectories. The number of trajectories a brute-force
search algorithm needs to try in order to find an optimal disentangling sequence. This number
grows exponentially with the sequence length and super-exponentially with the system size n.

Examining Fig. 6.1 we conclude that the expected length of an optimal disentangling
sequence grows exponentially with the number of qubits. This implies that the total
number of possible trajectories that need to be checked grows super-exponentially. Table
6.1 shows the number of trajectories that brute-force search needs to try in order to
solve quantum systems of sizes n = 4, 5, 6 qubits. With an optimistic assumption that
checking whether a sequence is a solution takes 10−4 seconds, it is obvious that solving
even a 5-qubit state is infeasible using brute-force search.

In order to overcome the super-exponential time complexity needed to run brute-force,
we tried running a local search algorithm. We tested beam search using a simple scoring
function that scores quantum states based on their current entanglement (see Eq. (4.1)):

score(|ψ⟩) = Savg(|ψ⟩).

A description of the beam search algorithm is given in Sec. 2.3.2. The algorithm pro-
gressively expands multiple trajectories guided by the scoring function. Paths that have
high scores continue to be expanded and paths that have low scores are abandoned. The
number of expanded paths k is kept constant and this allows the algorithm to run more
efficiently than a brute-force search algorithm.

Figure 6.2 shows how the algorithm works. At every step each of the k paths is expanded.
For the current state in every path we perform each of the possible actions from the action
set. The number of possible actions is n(n − 1); thus, this produces a set of kn(n − 1)

63

Figure 6.2: Functioning of beam search algorithm. At every step we extend the k-best paths.
Current states are expanded by performing each of the possible actions producing a fringe of
kn(n − 1) states. The algorithm continues by selecting the k-best states (colored yellow) from
the fringe.

new states, called the fringe. The algorithm continues by selecting the k-best states from
the fringe using the scoring function. From here we can see that beam search needs to
explore kn(n − 1)T different trajectories before arriving at a solution, where T is the
length of the solution sequence produced. Thus, beam search runs in O(Tn2) time, linear
with respect to the sequence length.

It should be noted that guiding the search using the average entanglement of the entire
state as a score function is not the best solution and a very simple improvement can be
made. Note that if we could disentangle one of the qubits from the rest of the system
then this qubit can no longer influence the other qubits and we can focus on disentangling
only the rest of the system. Thus, instead of aiming to disentangle the entire system as
a whole, we could run the beam search algorithm with the goal to disentangle only one
specific qubit. The score function that we use is then the entanglement of that qubit with
the rest of the system. When the qubit is disentangled we can simply run another beam
search procedure on the rest of the system, again focusing on one specific qubit, and so
on until the entire system is disentangled qubit-by-qubit.

A graph showing the running time of beam search for quantum systems with different
numbers of qubits is shown in Fig. 6.3b. The figure compares the running times of beam
search using the two different heuristic functions to the running time of a random agent.
A comparison between the solution sequence lengths produced is given in Fig. 6.3a.
From the two figures it can be seen that using the modified heuristic produces better
(shorter) solutions, while also running faster. However, the length of the solutions grows
exponentially with respect to the number of qubits, which lead us to Conjecture 2. We
can also see that the random agent runs much faster than the beam search. In fact, the
runtime of the random agent is O(T) because action selection is performed for constant
time at every step of the trajectory. However, the length of the solution sequence produced
by the random agent is a magnitude higher.

Even though the search agent manages to find near-optimal solutions to our problem, it
is obvious from Fig. 6.3b that the time needed to produce a solution sequence continues
to grow exponentially with the number of qubits, reaching up to 100 seconds for 10-qubit
states. We want to produce a policy as good as the search agent, but we want the policy

64

(a) (b)

Figure 6.3: Comparison between search agent and random agent. The algorithms are run until
the average entanglement of the quantum system reaches a threshold value ϵ = 10−3. The search
agent was run with two different scoring functions. The first uses s(|ψ⟩) = Savg(|ψ⟩) – states
are scored using their average entanglement. The second uses s(|ψ⟩) = S(ρ1) – states are scored
using the entanglement of the first qubit. When the first qubit is disentangled, we recursively
run another ‘beam search’ procedure disentangling the rest of the system. (a) Average number of
actions that a random search agent and tree search agents use to disentangle quantum systems
with different numbers of qubits. (b) Average run time that a random search agent and tree
search agents use to disentangle quantum systems with different numbers of qubits.

to run in a time-frame comparable with the random agent. In order to do that in the
following sections we explore how to train a neural network model as a policy.

6.3 Imitation learning agent

The most basic agent using a neural network model as a policy is the imitation learning
agent. The model is trained using behaviour cloning as explained in Sec. 2.2.

The most important ingredient to train a supervised learning model is a dataset of good
examples. To train the model we ceate a dataset, where each example data point consists
of a quantum state and the corresponding action that should be taken from that state, i.e.,
a (state, action) pair. We generate a dataset of examples using the search agent: given an
arbitrary quantum state the search agent produces a solution sequence for disentangling
that state, and we then divide that sequence into single step (state, action) pairs.

Using the search agent we can disentangle any quantum state; however, as we saw in
Fig. 6.3b, the time to disentangle a state grows exponentially with the length of the
produced solution. Having a neural network trained using the solutions produced by the
search agent we aim at arriving at a model that produces solution sequences of the same
near-optimal length as the search agent, but running in time linear with respect to the
solutions it produces.

For the purpose of this work we train a neural network policy for disentangling quantum
states of n = 5 qubits. To generate the dataset, we use the search agent with the modified
‘qubit-by-qubit’ heuristic. The average length of the solution sequences produced by the

65

(a) (b)

Figure 6.4: Training an imitation learning agent on 5-qubit states. Training is performed on a
dataset of 1.9× 106 examples using batches of size b = 2048. The optimization procedure uses
the Adam update rule with a learning rate parameter of lr = 10−4. (a) Average value of the loss
during each iteration of training, computed using Eq. (2.19), (b) In-sample and the out-of-sample
accuracy of the agent. The action accuracy shows how well the model approaches the solutions
provided by the search agent. The figures show that after the initial improvement the model
performance increases very slowly. The results can be reproduced using the hyper-parameters
from Table A.1.

search agent for 5-qubit states is T = 19. Thus, starting out with a set of 105 initial
states, the search agent generates a dataset of approximately 1.9× 106 data points.

To disentangle a 5-qubit state we experiment with different neural network architectures
for the model, starting with a small fully-connected network with one hidden layer and
increasing the size gradually. Satisfactory results are achieved with a fully-connected
network with three hidden layers of sizes [4096, 4096, 512] respectively. The model is
trained using the Adam [35] optimizer. In each iteration we run through the entire
dataset drawing at random batches of size b = 2048. For every data point pair in the
batch (st, at) consisting of a state and the corresponding action, we run the state through
the policy network producing a probability distribution over the action set. We then
compute the data point loss as the Kullback-Leibler divergence between the produced
probability distribution and the true distribution. The total loss at each step is computed
as the average data point loss over the entire batch. The value of the loss is then back-
propagated using the Adam update rule with learning rate of lr = 10−4. The average loss
at each iteration is shown in Fig. 6.4a.

During training we test the agent accuracy at every 100 iterations. The in-sample ac-
curacy is tested on a batch of bin = 1024 quantum states drawn at random from the
training set. The out-of-sample accuracy is tested on a fixed test set of Dtest = 10000
quantum states. To test the accuracy we compare whether the action scored with the
highest probability by the policy matches the action from the dataset. The in-sample
and out-of-sample action accuracies are plotted in Fig. 6.4b.

We can see from the panels in Fig. 6.4 that the agent learns well on the training set,
achieving an accuracy of ∼ 75% and continually reducing the value of the loss. However,
the out-of-sample performance peaks at iteration 100 and from there on only decreases.
Thus, the model does not generalize well and after iteration 100 starts overfitting the

66

Figure 6.5: Imitation learning agent success rate when tested to disentangle a 5-qubit quantum
state. The plot shows the percentage of states, for which the agent managed to reduce the
entanglement below ϵ = 10−3. The test is performed every 100 iterations on a set of b = 1000
randomly generated quantum states. The agent runs for T = 30 steps and after that the
entanglement of the quantum system is measured. We can see that the accuracy of solved states
is significantly lower than the action accuracy shown on Fig. 6.4b. The results can be reproduced
using the hyper-parameters from Table A.1.

training data.

Another test that we performed was to test the agent to disentangle randomly generated
quantum states. The test consists of running the agent for 30 steps on a set of 1000
randomly initialized quantum states and recording the ratio of the states that were suc-
cessfully disentangled. The results of the test are shown in Fig. 6.5. We can see that
during the first ∼ 150 iterations the agent greatly increases its performance; however, the
ratio of the solved states still remains fairly low at ∼ 30%. Although the out-of-sample
action accuracy of the agent is around ∼ 60%, disentangling the entire quantum state
requires selecting the correct action multiple times, which results in the low performance
on this test.

From the discussion so far we see that the model is capable of learning to achieve a
great improvement in the early stages of the training process. However, after ∼ 100 −
150 iterations the model starts overfitting the training data and its performance stops
improving, and even declines.

There are several reasons for the lack, however, the main reason why the agent fails to
learn to disentangle quantum states is that the problem is inherently sequential. We need
to perform the training on entire sequences rather than splitting each sequence into single
steps. One way to do that is to re-design the architecture of the neural network and use a
RNN (Recurrent neural network). Note, however, that choosing an action only depends
on the current state of the quantum system and does not depend on the history of the
trajectory. This implies that we can instead model the problem as an MDP and train an
agent using RL.

67

6.4 Policy-gradient agent

Given that the IL agent is not able to learn how to disentangle quantum states we decided
to train an RL agent. The training procedure uses the PG (Policy gradient) algorithm as
described in Sec. 2.1.4 and the quantum state is simulated using an environment model
as described in Sec. 5.2. Again, for the purpose of this work, we will be considering only
5-qubit quantum states. We will use the same three-hidden-layers architecture in order
to directly compare the PG agent with the IL agent.

As discussed in Sec. 5.3, we have to select a suitable value for the length of the episodes,
as the model of the environment that we use performs simultaneous parallel rollout of
multiple episodes. During training we experimented with several different values of the
episode length T starting with T = 19, which is equal to the number of steeps needed
for the search agent to disentangle a 5-qubit quantum state, and increasing the value
gradually. The best results during training and subsequent testing were achieved using
T = 40.

Another thing that needs to be selected is the scale of the rewards that the agent receives
at every step of the agent-environment interaction loop. The penalty is set to rpenalty =
−1, and for the reward achieved when the state is disentangled again we experimented
with several different values rsolution = 0, 1, 10, 100. The best results were achieved with
the value rsolution = 100. Using a value that is larger than the episode length is important
because it instructs the agent at the early stages of learning that solving the problem is
much more important than coming up with a very short solution sequence.

The most important metric to track during RL training is the return (see Eq. 2.2) obtained
by the agent, and how that value compares with the target return that we are aiming for.
Note that in this set-up our most sophisticated agent – which needs on average T = 19
steps to disentangle a 5-qubit quantum state, would achieve a return value of:

Rsearch(τ) = 19× (−1) + 100 = 81.

It should also be mentioned that initially we tried training the agent using the vanilla
policy gradient procedure; however we quickly discovered that the policy was converging
to a delta-function after a few hundred iterations and the training procedure was very
unstable to adjustments of the hyper-parameters. In order to solve that issue we extended
the policy gradient algorithm with an entropy-based regularization term (see Sec. 2.1.6).
Adding entropy-based regularization incentives the policy to remain probabilistic, thus,
encouraging exploration. For a thorough treatment of the topic of entropy-based regu-
larization see App. B.

The training procedure follows the process from Fig .5.1. At every iteration a batch of
b = 1024 episodes are rolled out in parallel for a duration of T = 40 steps. During rollout
a quantum state is fed to the neural network policy and from the produced probability
distribution an action is sampled. Once the rollout has finished the expected return
for each state is calculated. The gradient of the policy is then calculated using Monte-
Carlo approximation as explained in Sec.2.1.4 and back-propagated again using the Adam
update rule with learning rate of lr = 10−3. In addition, every 1000 iterations the agent
is tested by running a "greedy" rollout where actions are not selected probabilistically,
but rather the action with the highest score is always returned.

Note that the iterations during policy gradient training are very different from the itera-

68

(a) (b)

Figure 6.6: Training a policy gradient agent on 5-qubit states. Training is performed by rolling
out a batch of b = 1024 episodes for T = 40 steps, and calculating the policy gradient using
Monte-Carlo approximation (see Sec. 2.1.4). The optimization procedure uses the Adam update
rule with a learning rate parameter of lr = 10−3. (a) Average return accumulated by the agent
during each iteration. The model successfully learns sequences of actions that result in higher
returns. (b) Maximum and 95 percentile entanglement over the batch at the end of each episode.
It can be seen that the agent learns how to disentangle almost all quantum states, except for a
small fraction of outliers. The results can be reproduced using the hyper-parameters from Table
A.1.

tions during imitation learning training. While in imitation learning in a single iteration
we run through the entire dataset of 1.9 × 106 examples, here the agent observes only
around 1024× 40 ∼ 4× 104 examples in a single iteration. Thus, we expect the number
of iterations needed for training the PG agent to be much higher.

In Fig. 6.6a the accumulated returns during training and "greedy" testing are plotted.
The average return achieved by the agent already approaches the results from the search
agent, showing that the model successfully learns to find patterns and make decisions
that have an impact on the episode future. In Fig. 6.6b are shown the maximal and the
95 percentile values of the entanglement measured over the states in the batch at the final
step of the episode in each iteration. We can see that the agent quickly learns how to
reduce the entanglement of more than 95 percent of the quantum states that it is given,
leaving entangled only a small fraction of outlier states.

During training we also kept track of the percentage of solved states as well as the actual
number of steps needed to disentangle each state. Looking at Fig. 6.7a we see that
the agent needs about 104 iterations in order to learn how to successfully disentangle
nearly 100% of the states given. In Fig. 6.7b we see that after the agent learns how to
disentangle quantum states using sequences of length T = 40 it starts to explore other
sequences searching for better solutions further reducing the number of steps needed.
This behaviour is expected because of the way the reward function is designed. Note
that the return achieved by the agent is centered by subtracting the baseline average
return as given in Eq. (2.17). Thus, in case the agent manages to solve all states in the
batch, the rewards achieved at the end of each episode are canceled out by the baseline,
leaving only the accumulated penalties to score each episode. Thus, at the beginning of
the training process learning is dominated by the final reward achieved when the state
is disentangled. At the later stages learning is dominated by the length of the solution

69

(a) (b)

Figure 6.7: Performance of a policy gradient agent on 5-qubit states. (a) Percentage of solved
states averaged over the entire batch. The agent needs around 104 iterations to learn how
to disentangle nearly all of the quantum states. (b) Number of steps needed by the agent to
disentangle a 5-qubit quantum state. The number of steps are averaged over the entire batch.
We see that the agent continues to improve by producing shorter sequences after every iteration.
The results can be reproduced using the hyper-parameters from Table A.1.

sequence.

Using the Policy gradient algorithm we successfully managed to train a neural network
model that is capable of disentangling 5-qubit quantum states. Running the model and
disentangling a quantum state requires only O(T) time, where T is the length of the
solution sequence produced. This is true because action selection is performed in constant
O(1) time with respect to the number of qubits. Note, however, that training the model
requires a lot of iterations and takes a lot of time. Although, the required time depends
heavily on the available hardware, training an agent to solve a 5-qubit quantum state for
2× 104 iterations on a TeslaT4 GPU takes 19 hours.

6.5 Pre-trained agent

Despite the results of the PG agent, the solution is not scalable even to 6- or 8-qubit
systems. The main reason for this is the amount of time it takes for the agent to train.

An approximate estimate of the time required to train an agent is given in Table 6.2.
From Fig. 6.1 we can see that the random agent needs approximately T = 100 steps to
disentangle a 6-qubit quantum state and T = 400 steps to disentangle an 8-qubit quantum
state. We ran the policy gradient training procedure using these set-up configurations
(e.g., {n = 6, T = 100} and {n = 8, T = 500}) to obtain the time needed to run 103

iterations. In this calculation we assume that training on 6-qubit systems would need 5x
increase of the number of iterations compared to 5-qubit systems, i.e., 105 iterations. We
again assume that training on 8-qubit system would need 5x increase of the number of
iterations compared to 6-qubit systems, i.e., 5× 105 iterations. We should point out that
these numbers are just an educated guess and are not backed up by any experimental
data.

70

iters n = 5, T = 40 n = 6, T = 100 n = 8, T = 400

103 1 hour 1.5 hours 2.5 hours

2× 104 19 hours

105 150 hours

5× 105 1250 hours

Table 6.2: Expected time to train a policy gradient agent. This table shows the expected time
in hours that would be needed to train a PG agent to disentangle 5-, 6-, and 8-qubit quantum
systems respectively. The running times are calculated assuming that training an agent to
disentangle a 6-qubit system would need 105 iterations, and training an agent to disentangle
an 8-qubit system would need 5 × 105 iterations. The needed amount of time to train an
agent grows exponentially meaning that this solution is not appropriate for even slightly larger
quantum systems.

Looking at the table we see that the expected time to train an agent to disentangle an
8-qubit quantum system using the same algorithm and the same hardware would require
around 52 days! Obviously we would need to come up with a better solution in order to
solve larger quantum systems.

One way to speed up training is to reduce the number of iterations needed to train
the agent to solve quantum states and focus mainly on optimizing the number of steps.
Looking at Fig. 6.7, in the case of 5-qubit quantum states, almost half of the training
time is dedicated to finding a policy that could solve all states in the batch, and only
after that does the agent begin to improve on that policy by reducing the number of steps
it takes.

To achieve this we apply an idea that is common in NLP (Natural language processing)
and computer vision tasks and that is transfer learning [36]. Usually large neural network
models are pre-trained on some general task such as sentence completion [37] in the case
of NLP or image classification [38, 39] in the case of computer vision, and after that they
are fine-tuned to the specific task which needs to be solved.

In our case, instead of starting the reinforcement learning procedure from scratch, we
actually use the trained policy of the IL agent as the initial policy with which we apply
reinforcement learning. In other words, instead of starting with a policy with randomly
initialized weights, we start with a pre-trained policy that was trained on data generated
by the search agent and we ‘fine-tune’ that policy using reinforcement learning. One
important detail that we should keep in mind is that reinforcement learning works exactly
because the agent starts off randomly and explores different solutions, and gradually
improves on each iteration. If our pre-trained policy is not ‘stochastic enough’, then
during the reinforcement learning procedure our agent will not be exploring sufficiently,
thus, leading to bad results. However, if our pre-trained policy is ‘too stochastic‘, then
it will behave as if there was no pre-training at all. We see that pre-training has to
strike a good balance between exploration and exploitation, once again underlining the
importance of this trade-off.

Having this in mind we need to select a suitable amount of iterations for which to run im-
itation learning before continuing training with the policy gradient algorithm. However,
the number of iterations is not a quantity that can be easily interpreted and extrapolated

71

Figure 6.8: Normalized policy entropy during imitation learning training. The results from this
figure are taken from the training process explained in Sec. 6.3. The normalized policy entropy
measure is averaged over the batch of examples. Training starts with a randomly initialized
policy with high entropy measure. During the training process the entropy of the policy decreases
as the policy becomes less probabilistic. Red dashed vertical lines show the number of iterations
needed to reach certain values of the normalized entropy measure {0.3, 0.4, 0.5}. Using the
results from this figure we select the number of iterations for pre-training. The results can be
reproduced using the hyper-parameters from Table A.1.

for agents trying to disentangle quantum states with different number of qubits, or even
trying to disentangle quantum states with the same number of qubits but using different
hyper-parameters. Instead, we will keep track of the entropy of the policy H(πθ(·|s)) (see
Eq. (2.18)) to decide on a suitable value beyond which we should switch from imitation
learning to reinforcement learning. Note however, that even the entropy of the policy is
not a measure that is easily transferred between problems of different number of qubits.
The entropy of the policy depends on the size of the action space, which in turn varies
with the size of the quantum state. Thus, we introduce the notion of a normalized entropy
measure. We normalize the entropy in such a way that the uniform policy, having the
highest entropy value, has a normalized entropy measure of 1.0:

Hπ = −H(πθ(·|st))
d

, (6.1)

where d = |A(st)| is the size of the action space.

72

(a) pre-training for 100 iterations (b) pre-training for 100 iterations

(c) pre-training for 200 iterations (d) pre-training for 200 iterations

(e) pre-training for 500 iterations (f) pre-training for 500 iterations

Figure 6.9: Policy gradient with pre-training. The figures show how the performance of the
agents on disentangling a 5-qubit state improve during training. All pre-trained agents greatly
outperform non-pretrained policy gradient training (see Fig. 6.7 for results of non-pretrained
policy gradient agent, and Fig. 6.10 for comparison between the two). The figures showing the
ratio of solved states are plotted on a logarithmic scale along the x-axis. We can see that the
agent reaches above 90% success rate in just 100 iterations. The results with pre-training for
200 and 500 iterations are very similar, indicating that pre-training until a normalized entropy
measure for the policy of 0.4 is reached is sufficient. The results can be reproduced using the
hyper-parameters from Table A.1.

73

(a) (b)

Figure 6.10: Comparison between training a policy gradient agent with and without pre-training.
The results of training without pre-training are taken from Fig. 6.7. The results of training with
pre-training are taken from Figs. 6.9c, 6.9d. We see that policy gradient with pre-training
achieves better results while requiring much less training time. The pre-trained model almost
instantly learns to solve all quantum states in the batch and focuses entirely on improving the
number of steps. The results can be reproduced using the hyper-parameters from Table A.1.

The normalized entropy of the policy averaged over the batch during imitation learning
is shown on Fig. 6.8. We can see that during the training process the entropy of the
policy decreases as the policy becomes less and less probabilistic. In the figure we see the
number of iterations needed to reach certain values of the normalized entropy measure
{0.3, 0.4, 0.5}. A checkpoint of the policy parameters was saved at every 100 iterations
and the saved models that were closest to achieving these values were selected to be
trained with policy gradient.

We ran three separate policy gradient training procedures with a pre-trained model after
100, 200 and 500 iterations. The results of the trainings are shown on Fig. 6.9. When
training with a pre-trained model we decided to decrease the episode length to T = 30
steps. Note that the value of T = 40 was selected given that the agent starts out with
a randomly initialized policy. In the current setting, however, the agent starts with a
pre-trained policy and according to the results in Fig. 6.5 it is able to solve 20 ∼ 30%
of the states it sees with T = 30 steps. The rewards that are used for training with a
pre-trained model are the same as before, but the learning rate parameter is reduced to
lr = 5× 10−5.

An analysis of Fig. 6.9 shows that pre-trained agents almost instantly start solving all
the quantum states in the batch and the training process focuses entirely on improving
the number of steps. Note that the figures showing the ratio of solved states are plotted
on a logarithmic scale on the x-axis. The results also show that pre-training for 200
and for 500 iterations yield the same results, and are slightly better than training for
100 iterations. This leads to the conclusion that pre-training to a normalized entropy
measure for the policy of Hπ = 0.4 is sufficient.

In Fig. 6.10 we see a comparison between the metrics during the training processes of
a policy gradient agent with and without pre-training. The pre-trained model not only
trains much faster, but it also achieves a shorter sequence length.

74

Chapter 7

Outlook

Quantum entanglement is arguably the most important property of multi-qubit quantum
systems. It has no classical analog and it is the driving force behind the power of quantum
computing. Without this property quantum computers would have been computationally
equivalent to a classical computer. To manipulate and compute quantum entanglement,
however, we need to perform quantum simulations. And with quantum computers still
largely unavailable, we need to run these simulations on classical computers.

It is due to entanglement that the simulation of quantum systems on a classical computer
is a process of exponential complexity, in terms both of time and resources. Simulating
a 60-qubit quantum state on a classical computer was considered to be impossible even
on the most powerful super-computers available and it was only in 2022 when a 61-
qubit quantum state simulation was successfully performed [40]. Controlling quantum
entanglement is an even harder task. We have no formula that tells us what quantum
gates to apply and to which qubits to apply them to in order to bring a quantum system’s
entanglement to a specified quantity. Thus, we need to perform numerous simulations,
exploring different combinations of quantum actions, before we come to a solution.

In this work we set out to tackle the problem of controlling quantum entanglement in an
efficient manner. We ask the question whether the internal representation of a quantum
state provides any information regarding how the state can be disentangled into individual
qubits. And if, indeed, there is a pattern, can we train an intelligent agent to learn that
pattern, and in turn provide an efficient manner for controlling entanglement?

Based on the results of the experiments that were performed we can conclude that a
pattern does in fact exist and that learning is feasible. We saw that using RL (Rein-
forcement learning) agents can learn which is the correct sequence of quantum operations
that needs to be applied in order to disentangle 5-qubit quantum systems. We even went
further and showed how other forms of learning (e.g. BC (Behavioural cloning)) can be
used to enhance the performance of RL agents in the form of pre-training.

Nevertheless, it is safe to say that we have barely just scratched the surface of the prob-
lem of controlling quantum entanglement. First, given that the complexity to simulate
quantum systems on a classical computer grows exponentially with respect to the num-
ber of qubits, it still remains to be seen whether this solution can be applied to quantum
systems with larger numbers of qubits. It may be the case that other, more sophisticated
RL algorithms, need to be applied and tested in order for the learning process to be im-
proved. There have been a lot of improvements proposed in recent research, introducing

75

algorithms such as TRPO [41], PPO [42], GAE [43] and Soft-Actor Critic [21].

On the topic of transfer learning, we should point out that using supervised learning
is the most basic form of pre-training. A number of recent works have been published
[44, 45, 46, 47] focusing on pre-training using unsupervised learning. With this approach
the agent is allowed a period of unsupervised interaction with the environment, during
which it tries to build an improved representation of the state space. We expect that
improving the pre-training procedure would reduce even further the training time for
fine-tuning, which is essential for disentangling quantum systems with larger number of
qubits.

Finally, we have to mention that uncertainty is at the heart of quantum mechanics.
We cannot measure the values of complementary physical quantities with an arbitrary
certainty. A fundamental limit is imposed to the accuracy of such measurements. Thus,
in our simulations we have to account for this fact, and allow our models to tolerate
non-deterministic behaviour. An idea for a future improvement is to have our RL agents
operate on an observable of the quantum state instead of on the internal representation.

Obviously, there is still much more work to be done before arriving at agents that can
control quantum entanglement in large quantum systems. However, this work lays the
groundwork for many future investigations. We have split the process of evolving quantum
systems into two tasks and we have designed an algorithm for each of them. We proposed
a procedure for determining a locally optimal quantum gate that applies the maximum
reduction to the quantum entanglement. Next, we trained an RL agent that given a
quantum state can select the qubits to which an action should be applied. Using this set-
up further research can be carried out exploring different opportunities for improvement
and ultimately harnessing the power of quantum computing.

76

Appendix A

Hyper-parameters

Agent NN Opt lr T β−1

IL FCNN Adam 10−4 - -

PG FCNN Adam 10−3 40 10−2

pre-trained PG FCNN Adam 5× 10−5 30 10−2

Table A.1: Hyper-parameters used for training. The table shows all the hyper-parameters used
when performing the experiments.

FCNN (Fully-connected neural network) – fully connected neural network with three
hidden layers of sizes 4096, 4096 and 512 respectively. The input to the neural network is
a vector of size 2n+1 where n is the number of qubits in the quantum system. The output
is a vector of size n(n− 1).

Adam – Adam optimizer with parameters β1 = 0.9, β2 = 0.999, ϵ = 10−8.

77

Appendix B

Entropy-based exploration for
Monte-Carlo policy gradient methods

Researching the topic of entropy regularization in Monte Carlo policy gradient algorithms
was the subject of a pre-thesis course project submitted in partial fulfillment of the
requirements for the degree M.Sc. in Artificial Intelligence.

B.1 Introduction

Reinforcement learning is the study of agents and how they learn by trial and error.
The key components of reinforcement learning are the agent and the environment. The
interaction of the agent with the environment is described with a feedback loop as shown
on Fig. B.1. At every step of the loop, the agent observes the state of the environment,
and based on that observation decides on an action to take. When the environment is
acted upon, it changes its state according to a specified transition function. The transition
function outputs a probability distribution for the new state and that distribution depends
only on the last observed state and the action taken by the agent. The environment also
emits a scalar reward that can be described as a function of the previous state, the action
taken, and the new state. One run of the loop from start to finish is called an episode and
the goal of the agent is to maximise its total sum of rewards, called return, accumulated
throughout the interaction loop. The agent is not told which actions to take, and instead
discovers which actions are the most promising by trying them out.

In order to study and describe the algorithms used in reinforcement learning we need to
rigorously formulate the problem as a MDP (Markov decision process). An MDP is a
5-tuple {S,A,R,P , p0}, where:

• S is the set of all possible states of the environment (could be infinite);

• A is the set of all possible actions that the agent can take. We will assume that the
action space is discrete and finite;

• R : S×A×S → R is the reward function, where R(s, a, s′) is the immediate reward
received by the agent after transitioning from state s to state s′ due to action a;

• P : S ×A×S → [0, 1] is the transition probability function, where P(s′|s, a) is the
probability of transitioning from state s to state s′ due to action a;

78

Figure B.1: Interaction loop between agent and environment. This figure shows the interaction
feedback loop between the agent and the environment. At every step the agent observes the
state of the environment st and takes an action at. The environment transitions into a new state
st+1 and emits a reward signal rt+1.

Figure B.2: Markov Decision Process. This figure shows a graphical representation of a Markov
decision process. Arrows in the graph represent conditional dependence.

• and p0 is the initial state distribution over the state space S.

A graphical representation of a Markov Decision Process is shown on Fig. B.2.

In general we have no access to the transition function P and to the reward function R,
as we do not know the inner workings of the problems we are trying to solve (e.g. playing
Atari or autonomous driving). To succeed at the task of maximizing the return, the agent
must try different actions and progressively start preferring those actions that yield higher
returns (i.e. it must exploit). However, to find actions that maximize the return, the agent
must try new actions that it has not tried before (i.e. it must explore). This gives rise
to the so called exploration-exploitation dilemma [48]. The trade-off between exploration
and exploitation is one of the most important challenges in reinforcement learning. This
feature of reinforcement learning does not arise in other kinds of learning (e.g. supervised
or unsupervised learning).

To balance between exploration and exploitation we could add some stochasticity to the
behaviour of the agent. While the agent mostly exploits its previous choices, choosing
an action at random from time to time would cause the agent to explore actions that
it would not normally choose. The idea of adding some stochasticity to the behaviour
of the agent to increase exploration has been studied extensively and different methods
have been proposed [49, 50].

An idea proposed by Williams and Peng in Ref. [22] is to modify the reward at every time
step by augmenting it with a bonus that depends on the stochasticity of the agent (see
Sec. B.3.1). The bonus is higher if the behaviour of the agent is more stochastic and the
bonus is lower if the behaviour of the agent is more deterministic. This modification is
referred to as entropy regularization and recently gained popularity with the introduction
of the soft actor-critic algorithm by Haarnoja et. al. in Ref. [21]. Most of the work done
with entropy regularization estimates the return R(τ) using indirect methods based on

79

bootstrapping. This course project focuses on applying entropy regularization to policy
gradient with Monte-Carlo estimates of the return.

B.2 Monte-Carlo Policy gradient

During each step of the agent-environment loop the agent observes the current state
of the environment and chooses an action to take based on that state. Reinforcement
learning algorithms produce a rule, also called a policy, for choosing an action based on
the current state of the environment. More formally a policy

π : S → [0, 1]d

, where d is the number of actions in the action space d = |A(st)|, is a function that maps
(state, action) pairs to a probability score, where π(at|st) is the probability of picking
action at when observing state st.

Some reinforcement learning algorithms try to learn the policy function directly (e.g.
REINFORCE [51], TRPO [41], PPO [42]), while other algorithms learn the policy in-
directly by first learning a value function (e.g. Q-learning [11]). Both approaches have
their advantages and disadvantages and the choice of algorithm greatly depends on the
problem we are trying to solve.

In this course project we examine Policy Gradient which is a direct policy optimization
method that tries to learn a parametrised function representation of the policy π ≈ πθ.
The notation πθ means that the function π depends on a set of parameters θ (e.g. weights
and biases of a neural network). Policy Gradient tries to optimise the parameters θ by
performing gradient ascent updates computed based on the gradient of a performance
objective J(θ) with respect to the parameters θ.

The performance objective that we aim to maximise is the expectation of the sum of
rewards over all time steps

J(θ) = Es∼P,a∼πθ

[
T∑
t=0

rt+1

]
= Eτ∼Pθ

[
R(τ)

]
, (B.1)

where

R(τ) =
T∑
t=0

rt+1 (B.2)

is the return of the trajectory τ containing all time steps of a single episode.

The expectation of the return is computed over the probability distribution of the trajec-
tories, denoted by Pθ. To sample a trajectory we actually have to sample a state st ∼ P
and an action at ∼ πθ for every time step t. The probability of a trajectory τ under a
policy πθ is given by

Pθ(τ) = P0(s0)
T∏
t=0

πθ(at|st)P(st+1|st, at). (B.3)

To optimise the parameters of the policy we will iteratively perform gradient ascent
updates by computing the gradient of the objective J(θ) with respect to the parameters

80

θ and updating the parameters,

θk+1 = θk + α∇θJ(θ),

where α is the learning rate (or the step size). The parameter α is a hyperparameter
that must be fine-tuned during training. This type of optimization method is on-policy,
meaning that updates must use data collected while acting with the most recent version
of the policy.

To compute the gradient of the objective J(θ) note that the expectation E[R(τ)] can be
expressed as an integral:

E[R(τ)] =

∫
Pθ(τ)R(τ)Dτ. (B.4)

Now taking the derivative with respect to θ and noting that the return R(τ) is not a
function of θ we arrive at:

J(θ) = Eτ∼Pθ

[
R(τ)

]
=

∫
Pθ(τ)R(τ)Dτ,

∇θJ(θ) =

∫
∇θPθ(τ)R(τ)Dτ. (B.5)

Although we have an analytic expression for the gradient of the objective, this is not
very helpful. Since in general we have no access to the transition function P and to the
reward function R, there is no way to compute the gradient from this expression. Instead,
what we would like to do is express the gradient as an expectation over the probability
distribution of the trajectories. Having the gradient expressed as an expectation means
that we can approximate it using samples. Note the identity:

∇θPθ(τ) = ∇θPθ(τ)
Pθ(τ)
Pθ(τ)

= Pθ(τ)∇θ logPθ(τ). (B.6)

Substituting into Eq. (B.5) we arrive at:

∇θJ(θ) =

∫
Pθ(τ)∇θ logPθ(τ)R(τ)Dτ

= Eτ∼Pθ

[
∇θ logPθ(τ)R(τ)

]
. (B.7)

The expression logPθ is further transformed in order to get rid of unknown quantities.
Substituting Pθ with the expression from Eq. (B.3) and applying the product rule for
logarithms we arrive at the following:

logPθ(τ) = log

[
p0(s0)

T∏
t=0

πθ(at|st)P(st+1|st, at)

]
(B.8)

= logP0(s0) +
T∑
t=0

[
log πθ(at|st) + logP(st+1|st, at)

]
.

However, the transition function of the Markov Decsion Process does not depend on the
parameters θ, and thus, its derivative w.r.t. θ must vanish. Differentiating the previous
expression leads to:

∇θ logPθ(τ) =
T∑
t=0

∇θ log πθ(at|st). (B.9)

81

Finally, after combining Eq. (B.7) and Eq. (B.9), we arrive at an expression for the
gradient of the objective:

∇θJ(θ) = Eτ∼Pθ

[
T∑
t=0

∇θ log πθ(at|st)
T∑
t=0

rt+1

]
. (B.10)

To compute the gradient using samples we can collect a set of trajectoriesD = {τi}i=1,...,N ,
obtained using the agent-environment interaction loop. For each trajectory the agent uses
the policy πθ to choose its actions. Then the policy gradient can be approximated with:

∇θJ(θ) ≈
1

N

N∑
i=1

T∑
t=0

∇θ log πθ(at,i|st,i)
T∑
t=0

rt+1,i, (B.11)

where N is the number of trajectories collected in D. This method for calculating the
gradient of the objective is also known as Monte Carlo Policy Gradient as it uses a
Monte-Carlo estimate of the return.

Assuming that we have represented our policy in a way which allows us to calculate
∇θ log πθ(at|st), we can compute the policy gradient using sample trajectories and take an
update step. In case our policy πθ is parametrised by a neural network, however, we might
ask whether it is possible to use an automatic differentiation software package [24, 23]
to backpropagate the derivative of the objective ∇J(θ) in order to update the weights of
the model. To use auto differentiation we would need to define a loss function such that
its gradient is equal to the policy gradient.

Considering the function taken by integrating Eq. (B.11):

Jpseudo(θ) =

∫
∇θJ(θ)dθ

≈
∫

1

N

N∑
i=1

T∑
t=0

∇θ log πθ(at,i|st,i)
T∑
t=0

rt+1,idθ

=
1

N

N∑
i=1

T∑
t=0

log πθ(at,i|st,i)
T∑
t=0

rt+1,i, (B.12)

we can see that this function has the nice property that its gradient is equal to the policy
gradient when the (st, at) pairs are collected while acting with the current policy.

The function given by Eq. (B.12) is usually called a pseudo objective, because it is not a
loss function in the typical sense from supervised learning. Firstly, we are not sampling
data independently but rather the data must be sampled using the most recent model
parameters. And secondly, this function does not evaluate the metric that we aim to
optimize. Our goal is to maximize the expected return and this loss function has no
connection to the real objective. It is only useful to evaluate the gradient of our objective
at the current parameters, with data generated by the current parameters.

B.3 Exploration with entropy regularization

When learning a policy with policy gradient, exploration is ensured by the fact that the
policy outputs a probability distribution over the action space and actions are selected

82

in a non-deterministic manner. However, if an agent observes some state sk and chooses
an action ak producing some positive reward, then that action is reinforced. Thus, the
probability of selecting that action when observing state sk is increased. This makes it
more likely to reinforce that action again in the future, which in turn further increases the
probability of selection. It might happen that the agent will keep selecting this action,
while there could exist another action yielding a much higher return. Effectively, the
policy becomes a delta-function, choosing (sub-)optimal actions without the possibility
of exploring.

To see more rigorously why the policy would become a deterministic function we have to
note that the value of our objective depends on the logarithm of the probabilities of the
selected actions. The logarithm is an increasing function and it achieves its highest value
when the probability is equal to 1. Thus, if for a given state there are multiple actions
that lead to the same optimal return, then optimizing the objective would mean setting
the probability for one of those actions to 1.

B.3.1 Maximum entropy principle

To address this problem and improve the exploration capability of policy gradient, a
modification to the reward function was introduced by Williams and Peng in Ref. [22].
The reward received by the agent at each time step is augmented with a bonus, which is
proportional to the entropy of the policy at that time step:

r∗t+1 = rt+1 + β−1H(πθ(st)), (B.13)

where β−1 is a temperature parameter that controls the level of regularization, and

H(πθ(st)) = −
∑
a∈A

πθ(a|st) · log πθ(a|st)

= −Ea∼πθ
[
log πθ(a|st)

]
(B.14)

is the entropy of the probability distribution πθ(st).

The idea behind this modification is to train a policy that achieves high returns while
acting as randomly as possible. This way the agent learns by itself how much exploration
is necessary in order to learn properly. Substituting Eqs. (B.13) and (B.14) into Eq. (B.1),
we arrive at a new expression for the new performance objective that we aim to maximise:

J(θ) =Eτ∼Pθ

[
T∑
t=0

r∗t+1

]

=Eτ∼Pθ

[
T∑
t=0

rt+1 − β−1

T∑
t=0

log πθ(at|st)

]
. (B.15)

It is important to note that with the new objective we are not simply searching for a
policy with high entropy. Instead, we want a policy that would direct the agent into
states where the policy has high entropy. In other words, we want the agent to explore
states for which it has not yet learned how to act. To prove this statement we will show
that optimizing the objective given in Eq (B.15) would produce a policy that actually
tries to maximize the entropy of the probability distribution of the trajectories H(Pθ).

83

Increasing H(Pθ) means that the agent is less likely to repeat trajectories and more likely
to explore new paths.

Consider augmenting the objective given in Eq. (B.1) with the entropy of the probability
distribution of the trajectories:

J ′(θ) = Eτ∼Pθ

[
T∑
t=0

rt+1

]
+ β−1H(Pθ)

= Eτ∼Pθ

[
T∑
t=0

rt+1

]
− β−1Eτ∼Pθ

[
logPθ(τ)

]
.

Replacing logPθ(τ) with the result from Eq. (B.8) we can see that:

J ′(θ) =Eτ∼Pθ

[
T∑
t=0

rt+1

]

− β−1Eτ∼Pθ

[
T∑
t=0

log πθ(at|st)

]

− β−1 log p0(s0)− β−1

T∑
t=0

logP(st+1|st, at).

Note that the transition function P does not depend on the parameters θ and thus the
last two additives are constants; we have:

J ′(θ) = J(θ)− const.

Since we are looking for the values of the parameters θ that maximize the objective, then
adding a constant will not change the solution. Thus, finding a policy that maximizes
the objective J(θ) will in fact also maximize the objective J ′(θ).

B.3.2 Derivation of Entropy-regularized policy gradient

Modifying the objective function by augmenting the rewards with the entropy of the
policy at that time step means that we now have to re-derive the gradient of the objective.
The reason for this is that the additional entropy term also depends on the parameters θ
and this has to be accounted for when taking the derivative.

Differentiating Eq. (B.15) with respect to θ and using the linearity of the derivative we
arrive at the following expression for the gradient of the modified objective:

∇θJ(θ) = Eτ∼Pθ

[
T∑
t=0

∇θ log πθ(at|st)
T∑
t=0

rt+1

]

−β−1∇θ

∫
Pθ(τ)

T∑
t=0

log πθ(at|st)Dτ. (B.16)

The first part of Eq. (B.16) comes by directly plugging in Eq. (B.10). For the second
part we need to do differentiation by parts. To simplify the notation let us write:

Σθ(τ) =
T∑
t=0

log πθ(at|st).

84

Note that from Eq. (B.9) we also have:

∇θ logPθ(τ) = ∇θΣθ(τ).

Focusing only on the second part of Eq. (B.16) and applying again the substitution from
Eq. (B.6) we have:

∇θ

∫
Pθ(τ)Σθ(τ)Dτ =

=

∫
∇θPθ(τ)Σθ(τ) + Pθ(τ)∇θΣθ(τ)Dτ

=

∫
Pθ(τ)∇θ logPθ(τ)Σθ(τ) + Pθ(τ)∇θΣθ(τ)Dτ

= Eτ∼Pθ

[
∇θΣθ(τ)

[
Σθ(τ) + 1

]]
.

Finally for the gradient of the new objective given by Eq. (B.15) we have:

∇θJ(θ) = Eτ∼Pθ

[
T∑
t=0

∇θ log πθ(at|st)×

×

[
T∑
t=0

rt+1 − β−1

T∑
t=0

log πθ(at|st)− β−1

]]
.

Again, as the gradient is expressed as an expectation we can estimate it by drawing
samples:

∇θJ(θ) ≈
1

N

N∑
i=1

[
T∑
t=0

∇θ log πθ(at,i|st,i)×

×

[
T∑
t=0

rt+1,i − β−1

T∑
t=0

log πθ(at,i|st,i)− β−1

]]
. (B.17)

Similar to Eq. (B.12), we need to set-up a pseudo objective by integrating the approx-
imation of the gradient given by Eq. (B.17). We see that the expression for the policy
gradient given by Eq. (B.17) consists of three terms. The first term integrates similarly
to Eq. (B.12). Also it is trivial to find the anti-derivative of the last term. However, the
integration of the second term deserves some attention. To perform the integration we
will use the following identity:∫

f(θ)∇θf(θ)dθ =
1

2
f 2(θ), (B.18)

which holds for any integrable function f .

Applying the identity given in Eq. (B.18) to the second term of Eq. (B.17) we obtain:∫ T∑
t=0

∇θ log πθ(at|st)
T∑
t=0

log πθ(at|st)dθ =

=
1

2

T∑
t=0

log πθ(at|st)
T∑
t=0

log πθ(at|st).

85

For the new pseudo objective function we have:

Jpseudo(θ) ≈
1

N

N∑
i=1

T∑
t=0

log πθ(at,i|st,i)×

×

[
T∑
t=0

rt+1,i −
1

2
β−1

T∑
t=0

log πθ(at,i|st,i)− β−1

]
. (B.19)

B.3.3 Reducing variance

Monte-Carlo methods have the desirable quality of producing unbiased estimates of the
quantities we are trying to estimate. However, Monte-Carlo methods produce estimates
of very high variance. This is problematic as high variance estimates of the gradient will
not produce good updates of the policy parameters. In order to obtain a low variance
estimate of a quantity we would need a huge amount of samples which would significantly
increase the time needed for learning a policy.

To reduce the variance of the policy gradient approximation given in Eq. (B.10) we will
show that instead of the full trajectory return R(τ) =

∑T
t=0 rt+1 we could use the return

starting from step t,
∑T

t′=t rt′+1 without changing the expectation.

For any probability distribution Pθ parametrised by θ we have:

Ex∼Pθ
[∇θ logPθ(x)] =

∫
Pθ(x)∇θ logPθ(x)dx

=

∫
Pθ(x)

∇θPθ(x)

Pθ(x)
dx

=

∫
∇θPθ(x)dx

= ∇θ

∫
Pθ(x)dx = ∇θ1 = 0. (B.20)

An immediate consequence of Eq. (B.20) is that for any function b, which does not depend
on the action at, we have:

Eat∼πθ
[
∇θ log πθ(at|st)b(st)

]
= 0. (B.21)

Notice that, for a given episode, rewards obtained at earlier time steps should have no
effect on choosing the current action: indeed, agents should only reinforce actions based
on future returns and not on earlier gains. Noting that previous rewards are not a function
of the current action, and plugging rt′+1 into Eq. (B.21), it can be seen that:

Eτ∼Pθ

[
∇θ log πθ(at|st)

t∑
t′=0

rt′+1

]
= 0, (B.22)

for t′ < t.

The expressions for the gradient and for the pseudo objective given in Eqs. (B.10) and

86

(B.12) would now change to:

∇θJ(θ) = Eτ∼Pθ

[
T∑
t=0

∇θ log πθ(at|st)
T∑
t′=t

rt′+1

]

J(θ) =
1

N

N∑
i=1

T∑
t=0

log πθ(at,i|st,i)
T∑
t′=t

rt′+1,i.

A similar argument can be applied to the expression given in Eq. (B.17) which can be
rewritten as:

∇θJ(θ) = Eτ∼Pθ

[
T∑
t=0

∇θ log πθ(at|st)×

×

[
T∑
t′=t

rt′+1 − β−1

T∑
t′=t

log πθ(at′ |st′)− β−1

]]
. (B.23)

One problem with the expression given in Eq. (B.23) is that there is no closed form
solution for the anti-derivative of this expression. And, thus, there is no straightforward
way to arrive at an expression for the pseudo objective.; see Sec. B.6 for a proof of this
statement.

However, let us first consider what we could do to reduce the variance of the expression
given in Eq. (B.17). First of all, we can apply the variance reduction modification to the
first term. Second, the second term must not be modified in order to be able to arrive
at a closed form solution for the anti-derivative of the expression. Third, the last term
can be omitted as it is not a function of the current action, and according to Eq. (B.21)
its expectation is 0. Finally, we arrive at the following expressions for the gradient of the
objective and for the pseudo objective:

∇θJ(θ) = Eτ∼Pθ

[
T∑
t=0

∇θ log πθ(at|st)×

×

[
T∑
t′=t

rt′+1 − β−1

T∑
t=0

log πθ(at|st′)

]]

Jpseudo(θ) ≈
1

N

N∑
i=1

T∑
t=0

log πθ(at,i|st,i)×

×

[
T∑
t′=t

rt′+1,i −
1

2
β−1

T∑
t=0

log πθ(at,i|st,i)

]
.

B.4 Experiments and Results

To show how using entropy regularization improves training we will work with a simple
gridworld problem. In Fig. B.3 are shown two different gridworld layouts:

• A simple symmetric 5x5 gridworld with two terminal states. Using this layout
we will demonstrate how training with entropy regularization produces a non-
deterministic policy;

87

Figure B.3: Gridworld Layouts. The gridworld environment has a living reward of −1 and an exit
reward for leaving the terminal state. Two layouts are considered for the experiments – SmallGrid
(left) and MazeGrid (right). We use the SmallGrid layout to demonstrate how training with
entropy regularization produces a non-deterministic policy. And we use the MazeGrid layout to
demonstrate how training with entropy regularization produces a more optimal policy.

• A 5x5 gridworld maze with two terminal states. On this layout we will demonstrate
how training with entropy regularization produces a better policy that achieves
higher returns.

The cells of the grid correspond to the states of the environment. At each cell four actions
are possible: north, south, east and west, which deterministically cause the agent to move
one cell in the respective direction of the grid. Actions that would take the agent off the
grid leave its location unchanged. Every action results in a reward of −1. Leaving the
terminal state terminates the game and awards the agent an additional reward.

The states of the environment are encoded as one-hot vectors. The policy that we will
train is a linear function that maps each state to a score vector and applies a softmax
after that to produce a probability distribution over the action space.

st =
[
0 0 · · · 0 1 0 · · · 0

]
πθ(st) = softmax(st · θ)

B.4.1 SmallGrid

There are multiple policies that achieve the optimal return on the SmallGrid layout.
However, we would like to arrive at a policy that achieves the optimal return while
remaining as probabilistic as possible.

Figures B.4 and B.5 show the final policies learned by the agent with and without entropy
regularization respectively. We can see that when training without entropy regularization
the agent arrives at an optimal but deterministic policy for the problem. While training
with entropy regularization the final policy is (near) optimal but remains probabilistic.

Figure B.6 shows the average return obtained by the agent as a function of the training
iteration. When training without entropy regularization the agent achieves higher returns
and also needs fewer iterations to arrive at a better policy. The agent quickly learns to
exploit the knowledge it has for the environment.

88

Figure B.4: Final policy for the SmallGrid layout without entropy regularization. The policy
converges to a deterministic policy when training without entropy regularization. Training is
performed with entropy regularization temperature of 0.

Figure B.5: Final policy for the SmallGrid layout with entropy regularization. The policy
achieved when training with entropy regularization is non-deterministic. Training is performed
with entropy regularization temperature of 1.

However, the downside is that the policy quickly converges to a deterministic function
and the agent mostly exploits while very rarely exploring new trajectories. By examining
Fig. B.7 we can see that the entropy of the policy, when training without entropy reg-
ularization, converges towards 0.0 and at 20k iterations learning effectively stops. The
agent always follows the same trajectory from a given state without exploring new paths.
When training with entropy regularization the entropy of the policy converges towards
around 0.7, which corresponds to the entropy of the distribution

[
0.5 0.5 0.0 0.0

]
.

This could be interpreted that on average the agent is deciding between two actions and
chooses based on a coin-flip.

The relationship between the average entropy of the final policy and the entropy regu-

89

Figure B.6: Agent return averaged over the training batch. The return is calculated using
eq. (B.2) without adding the entropy bonus. The value is plotted as a function of iteration
count. Average returns increase faster and achieve higher results when training without entropy
regularization. Training is performed with a batch size of 32 and a learning rate of 10−3.

Figure B.7: Policy entropy averaged over all states of the environment. The value is plotted as
a function of iteration count. When training without entropy regularization the entropy of the
policy quickly converges to 0, which means the policy becomes a deterministic function. Training
with entropy regularization keeps the entropy of the policy high, which means the policy remains
a probabilistic function. Training is performed with a batch size of 32 and a learning rate of
10−3.

larization temperature is shown on Fig. B.8. We can see that as we increase the value
of the entropy regularization temperature parameter the entropy of the policy increases.
if β−1 is chosen too low, the entropy will not play a significant role in the optimization
and we may obtain a sub-optimal deterministic policy early during training as there was
not enough exploration. if β−1 is too high, the entropy will dominate over the rewards
received from the environment resulting in a purely random policy. The entropy regular-
ization temperature parameter is yet another hyperparameter that additionally needs to

90

Figure B.8: Policy entropy achieved when training with different values of the entropy regular-
ization temperature parameter. The entropy of the policy increases as we increase the value of
the entropy regularization temperature parameter.

Figure B.9: Final policy for the MazeGrid layout without entropy regularization. The policy
converges to a sub-optimal deterministic policy when training without entropy regularization.
Training is performed with entropy regularization temperature of 0.

be scheduled. We would like to have more exploration at the beginning of training and
less exploration at the end.

B.4.2 MazeGrid

To achieve the maximum return on the MazeGrid layout the agent must terminate at
the bottom right end of the grid. The reward received from reaching this terminal state
would outweigh any penalty accumulated during traversing the gridworld.

Figure B.9 shows the final policy learned by the agent when training without entropy
regularization. We can see that the policy learned for the states at the top row of the

91

Figure B.10: Final policy for the MazeGrid layout with entropy regularization. The policy when
training with entropy regularization converges to a better and non-deterministic policy achieving
higher returns. Training is performed with entropy regularization temperature of 1.

grid is actually not optimal. The agent should be moving left and down towards the
bottom right corner. Instead, however, the policy suggests that the agent should move
right towards the upper right corner. The reason for this might be that these states are
very close to the terminal state at the upper right corner. The length of the trajectory
needed to terminate at the upper right is very small (1-3 steps) and the agent very often
receives a positive feedback from following this path. To reach the bottom right corner,
however, the agent has to travel a much longer trajectory and it reaches the terminal
states very few times. This results in a much smaller amount of positive feedbacks.

Training with entropy regularization keeps the entropy of the policy high for the states for
which the agent is still not certain which is the optimal action. This allows it to explore
for a much longer period and, in turn, it allows it to arrive at a better policy achieving
higher returns for this layout. The final policy learned by the agent when training with
entropy regularization is shown in Fig. B.10.

Figure B.11 shows the average return obtained by the agent as a function of the training
iteration. At first when training without entropy regularization the agent achieves higher
returns. However without exploration it fails to improve its policy. Training with entropy
regularization converges slower however the agent manages to find a better policy and
eventually achieve a higher average return.

By examining Fig. B.12 we can see that both when training with and without entropy
regularization, the entropy of the policy converges towards 0.0. This is due to the fact
that for most of the states on this layout there exists a single optimal action, and thus
the optimal policy must be deterministic for these states. However, training with entropy
regularization allows the policy to remain non-deterministic for a longer period which in
turn incentivizes the agent to explore a larger set of trajectories and eventually arrive at
a better policy.

92

Figure B.11: Agent return averaged over the training batch. When training without entropy
regularization the agent achieves sub-optimal returns. Training with entropy regularization
allows the agent to explore more and achieve higher returns. The value is plotted as a function
of iteration count. Training is performed with a batch size of 32 and a learning rate of 10−3.

Figure B.12: Policy entropy averaged over all states of the environment. The value is plotted
as a function of iteration count. Training both with and without entropy regularization the
entropy of the policy converges to 0. Training with entropy regularization keeps the policy non-
deterministic for a longer period allowing the agent to explore more. Training is performed with
a batch size of 32 and a learning rate of 10−3.

B.5 Conclusion

Policy gradient provides us with the means to train agents and find an optimal policy for
problems for which we have no knowledge of the internal workings of the environment.
Learning is achieved solely through trial and error.

Training with entropy regularization allows agents to arrive at solutions that remain prob-
abilistic distributions and do not collapse into deterministic functions. This is helpful be-

93

cause, the policy remaining a probabilistic distribution increases the level of stochasticity
and allows an agent to continue to explore even when the policy is almost optimal. If the
policy becomes deterministic the agent might get stuck in a local extremum and never
arrive at an optimal solution. Continuously exploring different trajectories allows agents
to avoid local extrema.

Another reason for learning a stochastic policy is that, learning a deterministic policy
only leads to a single optimal solution to the problem. Learning a stochastic policy forces
the agent to learn many optimal solutions to the same problem: the agent is forced to
learn as much information as possible from the experienced transitions.

It should also be noted that, we rarely have a Markov Decision Process. Most interesting
problems are Partially Observed Markov Decision Processes (POMDPs), where the states
are indirectly inferred through observations, and these observations can be probabilistic.
In this setting the optimal policy to follow is a stochastic policy [52].

The idea of entropy regularization is regularly applied in bootstrapped methods [53] and
the effects have been studied extensively [21, 54, 55]. However, entropy regularization
can also be applied to Monte-Carlo methods in order to encourage exploration and im-
prove performance. In this course project we show how the formula for applying entropy
regularization is derived and we provide experiments to show the benefits of using it.

The idea of entropy regularization which is regularly used in bootstrapped methods can
also be applied to simpler Monte-Carlo methods in order to encourage exploration and
improve performance. The formula derived in Eq. (B.19) suggests that incorporating the
additional regularizing term comes practically for free in terms of computational costs
and the experiments described in Sec. B.4 show that using entropy regularization could
improve the performance of the model in terms of optimality.

B.6 Integration

In this section we will disprove the following claim:

Claim: There exists a closed form solution for the anti-derivative of the following expres-
sion:

T∑
t=0

∇θ log πθ(at|st)
T∑
t′=t

log πθ(at′|st′),

for any T ∈ N.

Proof:
Let us denote fi(θ) = log πθ(ai|si).We are now going to disprove the claim by providing
a counter-example for the case when T = 1. We want to find the anti-derivative of:

∇θf0(θ)

(
f0(θ) + f1(θ)

)
+∇θf1(θ)f1(θ)

Assuming the anti-derivative exists and taking the integral of this expression we arrive

94

at:

F (θ) =

∫ [
∇θf0(θ)

(
f0(θ) + f1(θ)

)
+∇θf1(θ)f1(θ)

]
dθ,

F (θ) =
1

2
f 2
0 (θ) +

1

2
f 2
1 (θ) +

∫
∇θf0(θ)f1(θ)dθ,∫

∇θf0(θ)f1(θ)dθ = F (θ)− 1

2
f 2
0 (θ)−

1

2
f 2
1 (θ),

which is equivalent to the statement that the expression

∇θf0(θ)f1(θ)

has a closed form solution for its anti-derivative for any two functionsf0(θ) and f1(θ) – a
contradiction

95

Bibliography

[1] Wikipedia. Stern–Gerlach experiment — Wikipedia, the free encyclopedia, 2022.

[2] A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical descrip-
tion of physical reality be considered complete? Phys. Rev., pages 777–780, 1935.
doi:10.1103/PhysRev.47.777.

[3] J. S. Bell. On the einstein podolsky rosen paradox. Physics Physique Fizika, pages
195–200, 1964. doi:10.1103/PhysicsPhysiqueFizika.1.195.

[4] P. Grangier, G. Roger, and A. Aspect. Experimental evidence for a photon
anticorrelation effect on a beam splitter: A new light on single-photon interferences.
Europhysics Letters, pages 173–179, 1986. doi:10.1209/0295-5075/1/4/004.

[5] B. Kraus and J. I. Cirac. Optimal creation of entanglement using a two-qubit
gate. Phys. Rev. A, page 062309, 2001. doi:10.1103/PhysRevA.63.062309.

[6] D. R. Terno. Nonlinear operations in quantum-information theory. Phys. Rev. A,
pages 3320–3324, 1999. doi:10.1103/PhysRevA.59.3320.

[7] T. Mor. Disentangling quantum states while preserving all local properties. Phys.
Rev. Lett., pages 1451–1454, 1999. doi:10.1103/PhysRevLett.83.1451.

[8] L. E. Baum and T. Petrie. Statistical inference for probabilistic functions of
finite state markov chains. The Annals of Mathematical Statistics, pages 1554–1563,
1966. doi:10.1214/aoms/1177699147.

[9] J. S. Denker, D. B. Schwartz, B. S. Wittner, S. A. Solla, R. E.
Howard, L. D. Jackel, and J. J. Hopfield. Large automatic learning, rule
extraction, and generalization. Complex Syst., 1987. doi:https://www.complex-
systems.com/abstracts/v01_i05_a02/.

[10] A. L. Samuel. Some studies in machine learning using the game of checkers. IBM
Journal of Research and Development, pages 210–229, 1959. doi:10.1147/rd.33.0210.

[11] C. J. Watkins and P. Dayan. Q-learning. Machine Learning, pages 279–292,
1992. doi:10.1007/BF00992698.

[12] G. Tesauro. Temporal difference learning and td-gammon. Association for Com-
puting Machinery, pages 58–68, 1995. doi:10.1145/203330.203343.

[13] G. Tesauro, D. C. Gondek, J. Lenchner, J. Fan, and J. M. Prager. Sim-
ulation, learning, and optimization techniques in watson’s game strategies. IBM J.
Res. Dev., pages 423–433, 2012. doi:10.1147/JRD.2012.2188931.

96

https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1209/0295-5075/1/4/004
https://doi.org/10.1103/PhysRevA.63.062309
https://doi.org/10.1103/PhysRevA.59.3320
https://doi.org/10.1103/PhysRevLett.83.1451
https://doi.org/10.1214/aoms/1177699147
https://doi.org/https://www.complex-systems.com/abstracts/v01_i05_a02/
https://doi.org/https://www.complex-systems.com/abstracts/v01_i05_a02/
https://doi.org/10.1147/rd.33.0210
https://doi.org/10.1007/BF00992698
https://doi.org/10.1145/203330.203343
https://doi.org/10.1147/JRD.2012.2188931

[14] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. baker, M. Lai, A. Bolton, Y. Chen, T. P. Lilli-
crap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D. Hass-
abis. Mastering the game of go without human knowledge. Nature, pages 354–359,
2017. doi:10.1038/nature24270.

[15] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel,
and D. Hassabis. Mastering the game of Go with deep neural networks and tree
search. Nature, pages 484–489, 2016. doi:10.1038/nature16961.

[16] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT
Press, 2018. ISBN 9780262039246.

[17] J. Achiam. Spinning up in deep reinforcement learning (https://spinningup.
openai.com, 2018.

[18] A. Salaün, Y. Petetin, and F. Desbouvries. Comparing the modeling powers
of rnn and hmm. ICMLA 2019: 18th International Conference on Machine Learning
and Applications, pages 1496–1499, 2019. doi:10.1109/ICMLA.2019.00246.

[19] K. J. Astrom and R. M. Murray. Feedback Systems: An Introduction for Sci-
entists and Engineers. Princeton University Press, 2008. ISBN 0691135762.

[20] L. Weaver and N. Tao. The optimal reward baseline for gradient-based reinforce-
ment learning. CoRR, 2013. doi:10.48550/ARXIV.1301.2315.

[21] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. CoRR, 2018.
doi:10.48550/ARXIV.1801.01290.

[22] R. J. Williams and J. Peng. Function optimization using connectionist
reinforcement learning algorithms. Connection Science, pages 241–268, 1991.
doi:10.1080/09540099108946587.

[23] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al. Pytorch: An impera-
tive style, high-performance deep learning library. Advances in neural information
processing systems, 2019. doi:10.5555/3454287.3455008.

[24] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. War-
den, M. Wicke, Y. Yu, and X. Zheng. Tensorflow: A system for large-scale
machine learning. 12th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 16), pages 265–283, 2016. doi:10.5555/3026877.3026899.

[25] D. A. Pomerleau. ALVINN: an autonomous land vehicle in a neural net-
work. Advances in Neural Information Processing Systems 1, pages 305–313, 1989.
doi:10.5555/89851.89891.

97

https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature16961
https://spinningup.openai.com
https://spinningup.openai.com
https://doi.org/10.1109/ICMLA.2019.00246
https://doi.org/10.48550/ARXIV.1301.2315
https://doi.org/10.48550/ARXIV.1801.01290
https://doi.org/10.1080/09540099108946587
https://doi.org/10.5555/3454287.3455008
https://doi.org/10.5555/3026877.3026899
https://doi.org/10.5555/89851.89891

[26] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang,
J. Zhao, and K. Zieba. End to end learning for self-driving cars. CoRR, 2016.
doi:10.48550/ARXIV.1604.07316.

[27] S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. Proceedings of Machine Learning
Research, pages 627–635, 2011. doi:10.48550/ARXIV.1011.0686.

[28] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems Science and
Cybernetics, pages 100–107, 1968. doi:10.1109/TSSC.1968.300136.

[29] A. Felner, U. Zahavi, R. Holte, J. Schaeffer, N. Sturtevant, and
Z. Zhang. Inconsistent heuristics in theory and practice. Artificial Intelligence,
pages 1570–1603, 2011. doi:10.1016/j.artint.2011.02.001.

[30] N. S. Yanofsky and M. A. Mannucci. Quantum Computing for Computer
Scientists. Cambridge University Press, 2008. ISBN 0521879965.

[31] M. S. ANIS et al. Qiskit: An open-source framework for quantum computing
(https://qiskit.org/). 2021. doi:10.5281/zenodo.2573505.

[32] W. Gerlach and O. Stern. Der experimentelle nachweis der richtungsquantelung
im magnetfeld. Zeitschrift für Physik, pages 349–352, 1922. doi:10.1007/BF01326983.

[33] D. Deutsch, A. Barenco, and A. Ekert. Universality in quantum computation.
Proceedings of the Royal Society of London. Series A: Mathematical and Physical
Sciences, pages 669–677, 1995. doi:10.1098/rspa.1995.0065.

[34] D. P. DiVincenzo. Two-bit gates are universal for quantum computation. Physical
Review A, pages 1015–1022, 1995. doi:10.1103/physreva.51.1015.

[35] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv,
2014. doi:10.48550/ARXIV.1412.6980.

[36] S. Bozinovski. Reminder of the first paper on transfer learning in neural networks,
1976. Informatica, 2020. doi:10.31449/inf.v44i3.2828.

[37] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-training
of deep bidirectional transformers for language understanding. CoRR, 2018.
doi:10.48550/ARXIV.1810.04805.

[38] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and
T. Darrell. Decaf: A deep convolutional activation feature for generic visual
recognition. CoRR, 2013. doi:10.48550/ARXIV.1310.1531.

[39] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-
ture hierarchies for accurate object detection and semantic segmentation. CoRR,
abs/1311.2524, 2013. doi:10.48550/ARXIV.1311.2524.

[40] X.-C. Wu, S. Di, E. M. Dasgupta, F. Cappello, H. Finkel, Y. Alexeev,
and F. T. Chong. Full-state quantum circuit simulation by using data compres-
sion. Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2019. doi:10.1145/3295500.3356155.

98

https://doi.org/10.48550/ARXIV.1604.07316
https://doi.org/10.48550/ARXIV.1011.0686
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1016/j.artint.2011.02.001
https://qiskit.org/
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.1007/BF01326983
https://doi.org/10.1098/rspa.1995.0065
https://doi.org/10.1103/physreva.51.1015
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.31449/inf.v44i3.2828
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.1310.1531
https://doi.org/10.48550/ARXIV.1311.2524
https://doi.org/10.1145/3295500.3356155

[41] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region
policy optimization. International conference on machine learning, pages 1889–1897,
2015. doi:10.48550/ARXIV.1502.05477.

[42] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.
doi:10.48550/ARXIV.1707.06347.

[43] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel.
High-dimensional continuous control using generalized advantage estimation.
arXiv:1506.02438, 2015. doi:10.48550/ARXIV.1506.02438.

[44] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is
all you need: Learning skills without a reward function. arXiv, 2018.
doi:10.48550/ARXIV.1802.06070.

[45] D. Yarats, R. Fergus, A. Lazaric, and L. Pinto. Reinforcement learning
with prototypical representations. arXiv, 2021. doi:10.48550/ARXIV.2102.11271.

[46] R. Zhao, Y. Gao, P. Abbeel, V. Tresp, and W. Xu. Mutual information state
intrinsic control. arXiv, 2021. doi:10.48550/ARXIV.2103.08107.

[47] H. Liu and P. Abbeel. Aps: Active pretraining with successor features. arXiv,
2021. doi:10.48550/ARXIV.2108.13956.

[48] T. L. Lai. Adaptive treatment allocation and the multi-armed bandit problem. The
Annals of Statistics, pages 1091–1114, 1987. doi:10.1214/aos/1176350495.

[49] A. L. Strehl and M. L. Littman. An analysis of model-based interval estimation
for markov decision processes. Journal of Computer and System Sciences, pages
1309–1331, 2008. doi:10.1016/j.jcss.2007.08.009.

[50] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and
R. Munos. Unifying count-based exploration and intrinsic motivation. Advances in
neural information processing systems, 2016. doi:10.48550/ARXIV.1606.01868.

[51] R. J. Williams. Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. Machine Learning, pages 229–256, 1992.
doi:10.1007/BF00992696.

[52] E. Todorov. General duality between optimal control and estimation.
2008 47th IEEE Conference on Decision and Control, pages 4286–4292, 2008.
doi:10.1109/CDC.2008.4739438.

[53] T. Haarnoja, A. Zhou, S. Ha, J. Tan, G. Tucker, and S. Levine. Learning to
walk via deep reinforcement learning. CoRR, 2018. doi:10.48550/ARXIV.1812.11103.

[54] B. Eysenbach and S. Levine. Maximum entropy RL (provably) solves some
robust RL problems. CoRR, 2021. doi:10.48550/ARXIV.2103.06257.

[55] Z. Ahmed, N. L. Roux, M. Norouzi, and D. Schuurmans. Un-
derstanding the impact of entropy on policy optimization. CoRR, 2018.
doi:10.48550/ARXIV.1811.11214.

99

https://doi.org/10.48550/ARXIV.1502.05477
https://doi.org/10.48550/ARXIV.1707.06347
https://doi.org/10.48550/ARXIV.1506.02438
https://doi.org/10.48550/ARXIV.1802.06070
https://doi.org/10.48550/ARXIV.2102.11271
https://doi.org/10.48550/ARXIV.2103.08107
https://doi.org/10.48550/ARXIV.2108.13956
https://doi.org/10.1214/aos/1176350495
https://doi.org/10.1016/j.jcss.2007.08.009
https://doi.org/10.48550/ARXIV.1606.01868
https://doi.org/10.1007/BF00992696
https://doi.org/10.1109/CDC.2008.4739438
https://doi.org/10.48550/ARXIV.1812.11103
https://doi.org/10.48550/ARXIV.2103.06257
https://doi.org/10.48550/ARXIV.1811.11214

	Title Page
	Certificate of Originality
	Abstract
	Title Page (Bulgarian)
	Certificate of Originality and Authenticity (Bulgarian)
	Abstract (Bulgarian)
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Codes
	List of Acronyms
	1 Introduction
	1.1 The quantum spin
	1.2 Superposition and entanglement
	1.3 Controlling entanglement and current research
	1.4 History of artificial intelligence
	1.5 Reinrofcement learning for optimizing combinatorial tasks

	2 Machine learning based optimisation
	2.1 Reinforcement learning
	2.1.1 Agents and environments
	2.1.2 States, actions and rewards
	2.1.3 Policy and value functions
	2.1.4 Policy gradient
	2.1.5 Variance reduction
	2.1.6 Entropy regularization

	2.2 Imitation learning
	2.2.1 Behavioural cloning
	2.2.2 Direct policy learning with data aggregation

	2.3 Search algorithms
	2.3.1 A* search
	2.3.2 Beam search

	3 Quantum computing prerequisites
	3.1 Classical computers
	3.1.1 Bits
	3.1.2 Gates

	3.2 Quantum bits of information (qubits)
	3.2.1 From classical to quantum
	3.2.2 Observables and measurement
	3.2.3 The Bloch sphere

	3.3 Multi-qubit systems
	3.3.1 Hilbert spaces
	3.3.2 Quantum entanglement

	3.4 Quantum gates
	3.4.1 Unitary gates
	3.4.2 Single-qubit gates
	3.4.3 Multi-qubit gates

	3.5 Density operators
	3.5.1 Pure and mixed states
	3.5.2 The density matrix
	3.5.3 Partial trace

	3.6 Quantifying quantum entanglement

	4 The multi-qubit system disentangling problem
	4.1 Fully separable system
	4.2 Applying quantum gates
	4.3 Locally optimal gates
	4.4 Exact solutions
	4.4.1 Two-qubit states
	4.4.2 Three-qubit states

	4.5 The optimization problem

	5 Controlling quantum entanglement using deep reinforcement learning
	5.1 Optimization using learning
	5.2 Reinforcement learning setup
	5.2.1 Simulation environment
	5.2.2 State space
	5.2.3 Action space
	5.2.4 Reward

	5.3 Parallel simulation
	5.4 Agent

	6 Artificial intelligence agents: training and results
	6.1 Random agent
	6.2 Search agent
	6.3 Imitation learning agent
	6.4 Policy-gradient agent
	6.5 Pre-trained agent

	7 Outlook
	A Hyper-parameters
	B Entropy-based exploration for Monte-Carlo policy gradient methods
	B.1 Introduction
	B.2 Monte-Carlo Policy gradient
	B.3 Exploration with entropy regularization
	B.3.1 Maximum entropy principle
	B.3.2 Derivation of Entropy-regularized policy gradient
	B.3.3 Reducing variance

	B.4 Experiments and Results
	B.4.1 SmallGrid
	B.4.2 MazeGrid

	B.5 Conclusion
	B.6 Integration

	Bibliography

