
Spacecraft maneuvering near small bodies using reinforcement learning

Team 101

1Department of Physics; Department of Mathematics and Informatics,
St. Kliment Ohridski University of Sofia, 5 James Bourchier Blvd, 1164, Sofia, Bulgaria

(Dated: January 23, 2021)

We approach the idea of an unmanned spacecraft trying to land on an asteroid from a reinforce-
ment learning perspective. We model a rotating ellipsoidal body and try to teach a reinforcement
learning agent to hover above a specific landmark on it. The agent is guided by a Double Duel-
ing Deep Q-Network which approximates the action value functions of the model by independently
calculating the state value and state-dependent advantage functions. As any deep Q-learning algo-
rithm, our approach poses the danger of instability with divergence. We explore various strategies
in order to improve our algorithm and make it more reliable.

I. MOTIVATION

Spacecraft maneuvering is a difficult task. In the case
of a controlled spacecraft we have two instances - either
it is manned or controlled from afar. In the former there
is danger for the man aboard and the latter is limited be-
cause the signal from the spacecraft has to travel to the
control room and back, therefore the spacecraft’s reac-
tion time is at least 2c ∗ distance− to− control− room.
So, in a dynamic environment, the idea of a spacecraft
that can test its surroundings and then act accordingly
with a relatively short reaction time, comes natural. In
this project we humor the idea of a spacecraft hovering
above a small dynamic celestial body, loosely following
the approach in [1].

To aid the reinforcement learning agent in its quest
to a fixed target point near the ellipsoid, a Double Du-
eling Deep Q-Network (D3QN) is used to generate ap-
proximate functions for the action values (Q-values) of
the environment. These Q-values are used to construct
an ε-greedy policy, which by definition is biased towards
choosing the action which would lead to highest immedi-
ate reward only most of the time, thus achieving balance
between exploration and exploitation.

The reinforcement learning environment is character-
ized by a continuous state space and a discretized action
space. The agent picks an action according to the policy
derived from the D3QN, and receives a state-dependent
reward. The new state is then determined by the physical
equations of motion of the spacecraft.

This paper is organised as follows: in Section II we
go over the physical description of the system and derive
the equations of motion for the spacecraft, as well as de-
scribe how those translate into a reinforcement learning
environment. Section III deals with the implementation
of the D3QN, and the convergence issues that may arise
from the instability of a DQN algorithm. A brief sum-
mary and conclusions are presented in Section IV.

II. DESCRIPTION OF THE PROBLEM

A. Building the environment

1. Description of the spacecraft and the aster-
oid
A small celestial body is modelled by an ellipsoid
with uniform density ρ and smooth surface. As-
suming the asteroid is tumbling with principal mo-
ments of inertia Ix, Iy, Iz and has dimensions a, b, c
along a non-inertial reference frame FS with an ori-
gin at its center of mass.
The equations of motion EoM of a spacecraft
around said body according to [1] and are as follows

r̈ =− 2ω × ṙ− ω̇ × r− ω × (ω × r)

+ ag + aSPR +
T

m
, (1)

ṁ =− T

ISPg0
, (2)

where with boldfaced characters are denoted vec-
tor quantities; the non-boldfaced characters are the
quantities’ magnitudes. The first term is the Cori-
olis acceleration, the second is the Euler acceler-
ation, the third - the centrifugal acceleration, ag
is the gravitational acceleration due to the small
body’s gravitational pull, aSPR is the acceleration
due to solar pressure radiation and other unknown
perturbations, T is the thrust of the engines and
m is the mass of the spacecraft. Said spacecraft’s
mass changes with time due to the expelled pro-
pellant with a derivative of ṁ proportional to the
thrust and inversely proportional to the propulsion
system specific impulse ISP and g0 = 9.8m/s2.

We adopt a model where the asteroid is spinning
uniformly, hence there is no Euler acceleration in
(1). We also forgo the Rocket equation (2) which
can be justified for spacecrafts with smaller engines.
The acceleration due to solar pressure radiation is
also taken out of the equations of motion in our
model. The now simplified equations of motion are

2

r̈ = −2ω × ṙ− ω × (ω × r) + ag +
T

m
. (3)

We evaluate each coordinate of the spacecraft’s net
acceleration r̈ at each time step and add it to its
velocity ṙ.

In our model the gravitational acceleration is New-
tonian and equal to

ag = G
M

r3
r, M =

4

3
abcρ, (4)

where G is Newton’s constant and M is the aster-
oid’s mass.

The angular velocity of the rotating asteroid ω is
overall unknown, but we can set an upper limit to
it. Given that asteroids are mostly piles of boul-
der with no other force but gravity keeping them
together, we set the condition that the centrifu-
gal force should not exceed the gravitational pull.
Therefore

ω2r ≤ GM

r2
=
G 4

3abcρ

r2
,

⇒ ω ≤

√
G 4

3abcρ

r3

∣∣∣∣∣
r=a

=

√
G 4

3bcρ

a2
. (5)

The spacecraft is described by its mass m and its
maximum thrust T . We assume that the spacecraft
knows its exact location relative to the landmark
at all times via optical sensors. The problem could
be further developed by introducing random noise
σSN into the agent’s sensory input as well as some
other random noise related to the engine’s specific
impulse σISP in (2) - currently not used.

In FIG. 1 we can see the agent interacting with the
environment.

2. Positioning of the spacecraft
The spacecraft’s initial position and initial velocity
are randomly sampled from a uniform distribution,
similarly to [2]. Their magnitude is also similar to
that in [2].

The hoovering position p is chosen to be right
above one of the poles. Further randomness could
be induced by obtaining p by an algorithm similar
to sampling on a sphere [1].

3. States, Actions and Reward functions

The state space is six dimensional S = [r, ṙ]. Here
r is the current position and ṙ is the velocity, both
calculated at each step from the equations of mo-
tion (3).

FIG. 1: The spacecraft’s position as affected by the equa-
tions of motion. Here the agent is taking random actions
which make it stray from planar motion. The agent eventu-
ally collides with the asteroid as expected due to gravity.

Each of the spacecraft’s controllers corresponds to a
thruster along the same axis and is associated with
a one dimensional action space, with the action be-
ing the the thrust along the axis. In the model at
its current state there is only one action along each
axis that the agent could take. The end goal is to
have the agent take continuous actions along each
axis varying in magnitude from 0 to the maximum
thrust T .

Detailed description of how actions are chosen,
through a certain policy, is given in the next sub-
section.
We tried different rewards where the reward func-
tion is a negative function of the relative offset of
the spacecraft to the desired hovering position

R(S) = −|r− p|, (6)

a negative quadratic of the distance

R(S) = −|r− p|2, (7)

or a logarithm

R(S) = − log(r− p). (8)

The functions gave varying results depending on
the parameters of the system but neither proved to
be better than the other.

III. DEEP REINFORCEMENT LEARNING FOR
SPACECRAFT MANEUVERING

A. Algorithm and Network Structure

We approach the problem of a continuous action space
by discretizing the possible action that the agent can

3

choose in all dimension. This forms a problem that can
be solved by Deep Q-learning, an algorithm for deriving
an optimal ε-greedy policy by approximating the action
value functions associated with each state.
We use a Double Dueling Deep Q-Network (D3QN) esti-
mator as an implementation of our reinforcement learn-
ing agent. The idea behind a Dueling DQN [3] is that
the agent no longer approximates the Q-function of a
state-action pair, but instead it learns the state value
function, and the advantage function of taking any ac-
tion from that state independently. This approach has
proven to be advantageous in the cases of many similarly-
valued actions and an environment which is not affected
by the actions in a way that’s relevant to the agent, both
of which are applicable to our problem. The network ar-
chitecture consists of a 128-neuron fully connected input
layer, a 64-neuron hidden layer, which decomposes into
two parallel 32-neuron hidden layers with outputs of 1,
and (number of actions), the first of which approximates
the value function of the state, while the second one gives
us the state-action pairs dependent advantage function.
We use the ReLU (Rectified Linear Unit) activation func-
tion in between every two layers. Then we calculate the
Q values from the inputs as follows

Q(si, ai) = V (si) +A(si, ai)−
1

|A|

|A|∑
j=0

A(s′j , a
′
j), (9)

where dependence of the Dueling DQN’s paramaters φ is
implied. Here, (si, ai) denotes the possible state-action
pairs, Q is the action value function, V - the state value
function, while the last term averages the advantage func-
tion over all possible actions for a fixed state.

These Q-values are then fit to the targets

yi(si, ai) = ri(si, ai) + γmax
a′

Qφ′(s′j , a
′
j), (10)

where ri(si, ai) is the reward obtained for observing a
given state-action pair, Qφ′ are calculated by a semi-
stationary network of the same structure as the main
(base) network φ which updates only once per a fixed
number of updates for φ. This additional structure is
introduced as a solution to the issue of a single DQN
regressing on self-dependent running target. Thus we
implement both the double DQN and dueling DQN al-
gorithms in order to try to achieve convergence.

Our algorithm also utilizes a memory replay buffer of
a fixed size which stores sequences of data sets of the
type (state, action, reward, terminal state bool) that
have been observed by the agent either by following a
random policy (prefilling) or during learning. The buffer
is updated periodically (ring buffer), as random of data
sets that are to be used for learning are sampled each time
the network is updated. This technique reduces correla-
tion between sub-sequential data sets, however, it could
introduce a problem of over-fitting sometimes referred to
as catastrophic forgetting where after a certain point, the
network has learned an optimal policy and thus refills

the buffer only with samples of that policy. In this way
it can ”forget” about the non-optimality of some actions,
therefore re-learning a policy that is too optimistic, and
approximating the value functions incorrectly. In order
to avoid that problem, we do not update all of the buffer
memory as the agent learns, but keep 10% of it filled with
randomly sampled non-optimal actions [4].

FIG. 2: The spacecraft trying to reach the target point,
denoted by the red mark. This trial achieved fairly good
convergence, however it took too long, and the episode was
terminated by a preset cap on the allowed number of steps.

FIG. 3: The spacecraft is fooled by the incorrectly opti-
mistic approximations for the value functions, and so picks
non-optimal actions, driving itself away from the target (red
mark). Episode was terminated, because the distance to the
target got larger than allowed.

4

FIG. 4: Even when fine-tuning the hyper-parameters, action
values and rewards, the spacecraft still doesn’t manage to
reach the target, despite having a somewhat good starting
trajectory.

FIG. 5: Mean reward achieved during training episodes.
Rewards are scaled as −|r - p|/100000.

B. Divergence issues and outlook

Sutton and Barto refer to the combination of function
approximation, bootstrapping (using existing estimates
to update targets) and off-policy training as the deadly
triad due to the immensely high probability of instability
and divergence occurring when all of the three methods
are combined into a single algorithm [5] . DQN is ex-
actly this type of algorithm and we were certainly faced

with the problem of dealing with the deadly triad. Fine-
tuning the hyper-parameters and introducing an expo-
nential learning rate schedule certainly helped with both,
as did relying on a more exploration heavy approach and
improving on the replay buffer size. We also tried to
utilize the technique of limiting (clipping) the values of
both the gradients of the loss function and the targets (to
prevent divergence), but that too didn’t provide satisfac-
tory results. After implementing these improvements,
the previously exponential divergence that we observed
has improved tremendously, but unfortunately we have
yet to be able to get rid of these problems completely, as
illustrated in FIG. 2 , 3 and 4. Furthermore, as we can
observe from FIG. 5 that it seems as if the approximated
policy imposes an upper limit of around −1 for the max-
imum achieved reward, which prevents us from achieving
the desired reward of 0.

An alternate approach of using a policy evaluation al-
gorithm could be taken to see if it would perform bet-
ter. Further fine-tuning might aid in the battle with the
deadly triad as well, however, we believe that had we
strictly followed the approach originally outlined in [1] of
using a different network architecture with a generational
particle swarm optimizer, the task of achieving conver-
gence would have been much more manageable, but un-
fortunately, both the understanding and implementation
of such algorithms are beyond the scope of this project
and course.

IV. CONCLUSION

We tried to approach the idea of a deep reinforcement
learning agent navigating near a small celestial body,
guided by a deep Q-network approximated ε-greedy pol-
icy. As discussed above, this idea turned out to be un-
fruitful, partially because of the instability issues often
associated with deep Q-networks, as well the possibil-
ity that a Q value approximator function based solution
is simply unsuitable for this problem. Further testing
is required in order to try to implement a more effective
neural network structure such as Deep Deterministic Pol-
icy Gradient with a continuous action space, or a Feed
Forward neural net with a generational swarm particle
optimiser.

V. ACKNOWLEDGEMENTS

The code that makes up our project is available for
viewing in the following GitHub repository: https://
github.com/rl-team-10/rl_project .

[1] S. Willis, D. Izzo, and D. Hennes, AAS/AIAA Space
Flight Mechanics Meeting (2016).

[2] B. Gaudet and R. Furfaro, AIAA/AAS Astrodynamics
Specialist Conference , 5072 (2012).

https://github.com/rl-team-10/rl_project
https://github.com/rl-team-10/rl_project
https://www.esa.int/gsp/ACT/doc/MAD/pub/ACT-RPR-MAD-2016-NAPA-HoveringOnSmallBodies.pdf
https://www.esa.int/gsp/ACT/doc/MAD/pub/ACT-RPR-MAD-2016-NAPA-HoveringOnSmallBodies.pdf
http://dx.doi.org/10.2514/6.2012-5072
http://dx.doi.org/10.2514/6.2012-5072

5

[3] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot,
and N. Freitas, in Proceedings of The 33rd International
Conference on Machine Learning , Proceedings of Machine
Learning Research, Vol. 48, edited by M. F. Balcan and
K. Q. Weinberger (PMLR, New York, New York, USA,

2016) pp. 1995–2003.
[4] T. de Bruin, J. Kober, K. Tuyls, and R. Babuska (2015).
[5] R. S. Sutton and A. G. Barto, Reinforcement Learning:

An Introduction (MIT Press, Cambridge, MA, 2017).

http://proceedings.mlr.press/v48/wangf16.html
http://proceedings.mlr.press/v48/wangf16.html
https://webdocs.cs.ualberta.ca/~sutton/book/the-book-2nd.html
https://webdocs.cs.ualberta.ca/~sutton/book/the-book-2nd.html

	Motivation
	Description of the problem
	Building the environment

	Deep Reinforcement Learning for Spacecraft Maneuvering
	Algorithm and Network Structure
	Divergence issues and outlook

	Conclusion
	Acknowledgements
	References

