
Resource Management with Deep Reinforcement Learning

Studeny X1, ∗ and Student Y1, †

1Department of Mathematics and Informatics, St. Kliment Ohridski
University of Sofia, 5 James Bourchier Blvd, 1164, Sofia, Bulgaria

(Dated: January 23, 2021)

Abstract Solving resource management problems is essential in most computer systems and
networks nowadays. Most of these problems are solved by using specifically designed heuristics
based on the workload and environment of the system. We use Deep RL to create a system which
learns to manage its resources from experience. Our results show that the system can outperform
some of the standard (heuristic) methods, can adapt to different environment workload and be
optimized for a specific system objective.

I. INTRODUCTION

Every adequate computer system should be able to
handle its resources optimally. This is mostly accom-
plished nowadays using heuristic algorithms, which take
into consideration the load of the system and the spe-
cific environment. In most cases, if we want to improve
the heuristic methods, we have to take into account the
workload and the specifics of the particular environment,
making them difficult to implement and maintain. Our
idea is to create a system which learns to manage re-
sources on its own from experience in such a way that
it optimizes the overall resource utilization. This is a
challenging endeavour, as these systems are usually com-
plex and difficult to model accurately. The execution of a
task depends on server metrics, system load, synchroniza-
tion and much more. For this topic the only prerequisite
knowledge required outside RL is basic understanding of
job scheduling and resource allocation in computer sys-
tems.

In reinforcement learning the agents learn to make bet-
ter decisions from their previous experience by interact-
ing with the environment. The agent receives a reward
based on how well it is doing on the task, so that it
can improve its future actions. If we can create a reward
which can guide our agent towards good solutions for our
system objective, then this makes RL the right tool for
building such a system. Furthermore, these systems nor-
mally make repetitive decisions thus making the resource
management an appropriate RL task. Also an enormous
amount of data is being easily generated and by continu-
ous training, the RL agent can be optimized for a specific
workload (e.g. small jobs).

We used synthetic dataset for our experiments. Based
on our results, the RL system has better performance
than some of the most well-known heuristic methods used
today (SJF and Packer). We present the results in more
detail in III. The advantage which we think is most sig-
nificant of such a system is that it can adapt to differ-

∗Electronic address: x@uni-sofia.bg
†Electronic address: y@uni-sofia.bg

ent underlying systems without any prior knowledge of
their behaviour, which makes the system more generic
and widely applicable. All the code used for writing this
paper is available in [1].

II. METHODS

In this section we place the problem within RL by
defining the state, action, reward spaces, together with
the environment, the algorithms and neural network ar-
chitectures used in the implementation.

FIG. 1: An example of the state with two resources and
three pending job slots.

State space. Each job which arrives to be sched-
uled for execution is represented as a pair of resource
vector rj = (rj,1, rj,2, ..., rj,d), where rj,i is the resource
requirement for the i-th resource type (e.g. CPU, GPU,
memory) and Tj which is the duration of the job. The
state space consists of multiple two-dimensional grids,
as shown on 1. The different colors in the cluster grids
represent different jobs, which have been scheduled. On
1 the job placed under job slot 1 has a resource vector
r = (3, 2) and a duration of 2. Because this state is used
as input to a neural network, we want it to have a fixed
size. That’s why we maintain a state with only the first
M jobs which have arrived for scheduling. The jobs after
the first M are put in the backlog, which just stores them
in a queue and whenever a slot becomes empty from the

mailto:x@uni-sofia.bg
mailto:y@uni-sofia.bg

2

queue, a job is transferred from the backlog to that par-
ticular slot. The whole state of the system consists of the
machine grid, the grids of the different jobs in the work
queue and the grid of the backlog. Representing the state
space in such a way also makes the action space linear in
the size of the work queue.

Action space. The agent will pick actions based on
a policy, which is the probability of picking an action in
a given state. As we mentioned we keep a state with a
fixed size M, but because the agent may want to schedule
any subset of these M jobs and for this problem there
can be over 2100 such pairs thus making it impossible to
store them all in memory. The approach which we have
adapted is to have an action space with size M + 1, where
action = i means that the agent wants to schedule the
job at that particular index in the working queue and
the last action at index M + 1 is the void action. In
order to allow the agent to schedule any subset of the M
jobs currently in the queue, on each time step time gets
frozen, until the agent picks the void action or an invalid
action. Invalid action is when the agent tries to schedule
a job at index i, but the working queue does not contain
a job at that index.

Reward space. The reward signal which we used
is created so that we can make the agent optimize the
system objective, which in our case is the average job
slowdown. The average slowdown is calculated by the

formula 1
|J|
∑
j∈J

Cj
Tj

, where J is the set of jobs currently

in the system, Cj is the finish time of the job i.e. the
time between entering the system and finishing execu-
tion. This is divided by Tj which is the length of the job.
By adding this normalization we prevent the system from
biasing towards large jobs. To optimize this objective our
reward is

∑
j∈J

−1
Tj

. When the discount factor is set to

1, the cumulative reward is the same as the negative of
the sum of the job slowdowns for some time step t. It
is therefore possible by changing the reward to make the
system optimize for different objective e.g. completion
time or maximum resource utilization.

Environment. The environment is represented as a
cluster with d resource types and each type is a grid with
height 20t and width 1r where each square on the grid
represents a workload and duration of 1 for that partic-
ular resource type. For example on 1 there are 3 jobs
currently running in the cluster presented with different
colors for clarity, 3 jobs waiting to get scheduled in the
working queue and 2 jobs in the backlog. The green job,
which is currently running in the machine has a resource
vector r = (3, 2) and a duration of T = 2, which means
that it will finish for 2 time steps and will require 3 units
of CPU and 2 units of RAM in order to complete success-
fully. This environment has some simplifications from a
real cluster, like currently it does not support preemption
[2] or job fragmentation [3]. Even though, this simplifies
the task from the real one, it still captures the essential
characteristics of job scheduling.

Algorithms. We use deep neural network with one
hidden layer to represent the policy πθ(s, a). RL with

FIG. 2: Reinforcement learning with policy represented as
Deep Neural Network

policy as Deep Neural Network is shown on 2. We have
used RL algorithms that perform gradient-descent on the
policy parameters. More specifically the algorithm which
we used and which is also used in the original paper [4] is
REINFORCE [5]. In general these algorithms are known
as policy gradient methods. The idea of policy gradient
is to estimate the gradient by observing the trajectories τ
which we get by following the policy and then update the
parameters θ of the policy using gradient descent. As we
know, in RL the overall goal is to maximize the objective
J which is the expected cumulative discounted reward:

J = Eτ∼Pπ [G(τ)|St=0 = s0] , G(τ) =

T∑
t=1

r(st, at)

The gradient of the objective with respect to θ is:

∇θJ(θ) = ∇θEτ∼Pπ

[
T∑
t=1

r(st, at)|St=0 = s0

]

However, we don’t know the transition probabilities
p(s′|s, a) and because of that we have to estimate the
gradient from samples. The initial state distribution and
the transition probabilities are independent of θ, there-
fore using the definition of Pπθ we see that:

∇θPπθ (τ) = ∇θπθ(τ), where πθ(τ) =

T∏
t=1

π(at|st)

Now, using MC we can estimate the gradient from a
sample of multiple trajectories.

∇θJ(θ) = Eτ∼Pπ [∇θ logPπθ (τ)G(τ)]

After that we update the policy parameters via gradi-
ent descent using the following rule:

θ ← θ + α

T∑
j=1

∇θ log πθ(τj)G(τj)

However, this has a problem which occurs due to high
variance of the gradient estimate. That’s why we have

3

used a variant of the REINFORCE [5] algorithm, which
reduces the variance by subtracting a baseline value from
each return G(τj). Our update rule has the form:

θ ← θ + α

N∑
j=1

T∑
t=1

∇θ log πθ(a
j
t |s

j
t)

[
T∑
t′=t

r(ajt′ |s
j
t′))− b

]

The overall effect is that by doing this we reinforce
actions which lead to better returns in general.

To further improve performance of policy gradient al-
gorithm we examined the Natural policy gradient ap-
proach described in [6]. Ordinary gradient descent meth-
ods typically search for the smallest parameter change
∆θ which causes the biggest negative change of the loss
function and they generally perform very well on super-
vised learning tasks. However, RL introduces a further
problem - the non-stationarity of the space, so the search
is now oriented to finding the biggest ∆θ which induces
the smallest change in the policy, but in the right direc-
tion. We need to establish a distance measure between
the distributions of the current policy and the updated
one. When dealing with Euclidean parametric space the
distance measure is:

‖θ − θ′‖2 =
√

(θ − θ′)2

where θ′ = θ + ∆θ is the new policy. However, normally
the parametric space of a RL task has a Riemannian met-
ric structure, introduced in [7], so another metric should
be applied to measure distance in Riemannian sense. One
common measurement of the statistical distance between
two distributions p and q is the Kullback-Leibler (KL)
divergence ([8]):

DKL (p‖q) = Ex∼p

[
log

p(x)

q(x)

]
=

∫
p(x) log

p(x)

q(x)

The KL divergence has the property of not being sym-
metrical (DKL (p‖q) 6= DKL (q‖p)), so most commonly
the symmetric KL divergence is used, also called Jensen-
Shannon (JS) divergence:

DJS (p‖q) =
DKL (p‖q) +DKL (q‖p)

2

In cases when symmetric KL divergence is used to mea-
sure the distance between two distributions, the corre-
sponding Riemannian metric is the Fisher information
matrix (FIM), defined as the Hessian matrix of the KL
divergence around θ:

F (θ) = ∇2DJS (πθ(at, st)‖πθ′(at, st))
∣∣
θ=0

This equation requires that second order derivatives are
calculated, they are complex and heavy to obtain, espe-
cially when θ parameters are too many. For this reason
we use another formula making use of the log probabili-
ties of the distribution:

F (θ) = Eπθ

[
∇θ log πθ (∇θ log πθ)

T
]

The Fisher information matrix is useful as it allows to lo-
cally approximate the KL divergence between two distri-
butions (when ∆θ is small). Using a second order Taylor
expansion we get:

DJS (p‖q) ≈ ∆θTF (θ)∆θ

The KL divergence is then locally quadratic, which
means that the update when performing gradient descent
optimization will be linear. With natural gradient de-
scent we move along the statistical manifold defined by p
updating the gradient of J(θ) using the local curvature
of the KL-divergence surface, meaning that we move in
the direction of ∇̃θJ(θ) - the natural gradient of J(θ):

∇̃θJ(θ) = F (θ)−1∇θJ(θ)

In this sense Natural gradient descent moves in the di-
rection:

∆θ = −α∇̃θJ(θ)

where α is the step size. Finally, the update rule becomes:

θ′ = θ − α∇̃θJ(θ)

We estimated F (θ) using the empirical Monte Carlo
methods described in [9].

III. RESULTS

We built setup similar to the one described in [4]. We
have a fixed job arrival rate which is used to regulate
the load of the cluster. The duration of each job is cho-
sen uniformly between 1t and 3t with 80% probability for
these so called small jobs and the rest are also chosen uni-
formly between 10t and 15t - big jobs. The cluster has 2
resources, each with capacity 1r and each job has a dom-
inant resource, which is randomly picked. The resource
demands of each job are between 0.25r and 0.5r for the
dominant resource and between 0.05r and 0.1r for the
other resource. The deep neural network has one hidden
layer, which has 20 neurons and the cluster has a fixed 20t
duration for scheduling incoming jobs. The work queue
from which the agent chooses jobs for scheduling has a
fixed size of 10, but the agent can also observe all the
other jobs in the backlog, which also has s fixed size of
60. In each training iteration we run 20 MC simulations
for each job set and after that the policy parameters get
updated using ADAM [10] with a learning rate of 0.001.
The size of each job set is also fixed and based on the
job rate the overall cluster load can be regulated and es-
timated. The calculation of the cluster load is not speci-
fied in the original paper [4], so we have come up with the
following formula for estimating it: L = Q+M , where Q
is the load of the working queue and M is the machine

load. Q = jobs in the queue
queue size and M = 1

K

∑K
i=1Ri, where

Ri = unavailable slots
all slots is the load of the i-th resource type

4

in the cluster. In the results which we show we have used
r = 50 and t = 3. The objective which we measure is
the average job slowdown for each episode. On 3 we have
shown the average slowdown and the mean reward with
its variance achieved at each iteration during training.
The results shown are from training for 1000 episodes
and cluster load of around 70− 80%.

FIG. 3: Average slowdown and the mean final reward with
its variance for 1000 episodes.

We have compared the Deep RL algorithm with the
two most well-known job scheduling algorithms today -
SJF and Packer. The SJF algorithm allocates jobs in a
increasing order of their duration and the Packer algo-
rithm allocates jobs by picking the one with the highest
dot product of job resource vector and machine resource
vector as described in [11]. We have compared them
based on the system objective for which the training was
done - the average job slowdown and cluster load approx-
imately 70-80%. The comparison results are plotted on
4.

FIG. 4: Average slowdown of the Deep RL, Packer and SJF
algorithms for cluster load approximately 70-80%

As we can see SJF performs better than Packer because
it allocates the smallest jobs first. The Deep RL algo-
rithm performs slightly better than the SJF algorithm,
because it is able to learn that it is optimal to keep some
resources free in the cluster in order to be able to schedule
future arriving small jobs as fast as possible thus reducing
the average slowdown. Optimization for other objectives

is also possible by crafting the appropriate reward. For
example to optimize for average completion time we can
use as reward at each timestep −|J |, which is the nega-
tive number of unfinished jobs currently in the system or
for average resource utilization we can use the computed
system load, because higher load = better resource uti-
lization. The major advantage of such an algorithm over
the other heuristic algorithms is that it can adapt to dif-
ferent underlying systems, without any prior knowledge
of their behaviour and optimize for different objectives.
These facts make the system more generic and widely ap-
plicable. We also made an attempt to implement Natural
policy gradient algorithm, described in [6], but unfortu-
nately a working solution could not be achieved. Rea-
sons why the policy network could not converge are not
at full extent clear, but several anomalies were found,
namely the Fisher information matrix was too large to
populate memory, so tests had to be conducted with the
compact environment state which is not so representa-
tive as the complete state. What is more, the training of
the network slowed down by a factor of 4 per iteration.
This happened because of the exhaustive Monte Carlo
approximation of F (θ). In an attempt to enforce faster
convergence we also tried some of the methods described
in [12]. In that approach the step size is assigned:

α =

√
2ε

∇θJ(θ)TF (θ)∇θJ(θ)

where ε is a small arbitrary value. The term under the
root appeared to become negative despite our numerous
attempts to find a solution. One speculation on why this
happened is that F (θ) is an approximation of the real
Fisher matrix and does not have the actual values that
have to be there.

IV. CONCLUSION AND OUTLOOK

In this final project paper we have reproduced some of
the results from [4] and we show that it is appropriate
to use Deep RL methods to manage job scheduling sys-
tems. Our RL agent can directly learn from experience
and has better performance than the heuristic methods
for solving these type of problems, so it definitely can be
used as their replacement. The model has some limita-
tions as also stated in [4], for example it does not model
the dependencies between different jobs (shared memory,
CPU cache etc.), does not include job fragmentation and
the job scheduling is non-preemptive, which simplifies the
overall problem. However, even with these simplifications
the model captures the essentials of a job scheduling clus-
ter. Finally, we think that these limitations open some
new direction for research and once overcome the model
will become more realistic and can be deployed to a phys-
ical cluster for real testing.

5

[1] “Resource management with deep reinforcement learning
code repository,” https://github.com/angelbeshirov/

resource-management (2021).
[2] D. R. Belgaum, S. Soomro, Z. Alansari, S. Musa,

M. Alam, and M. M. Su’ud, Load Balancing with preemp-
tive and non-preemptive task scheduling in Cloud Com-
puting (2019).

[3] S. Mitra, S. S. Mondal, N. Sheoran, N. Dhake, R. Nehra,
and R. Simha, DeepPlace: Learning to Place Applications
in Multi-Tenant Clusters (2019).

[4] H. Mao, M. Alizadeh, I. Menache, and S. Kandula,
Resource management with deep reinforcement learning
(2016).

[5] R. S. Sutton, D. A. McAllester, S. P. Singh, Y. Man-
sour, and et al., Policy gradient methods for reinforce-
ment learning with function approximation (1999).

[6] S.-i. Amari, Neural Computation 10 (2000).

[7] S.-i. Amari, Differential-Geometrical Methods in Statis-
tics, Vol. 10 (2000).

[8] D. Pollard, Asymptopia: An Exposition of Statisti-
cal Asymptotic Theory (???, 1999) unpublished book
manuscript.

[9] J. Peters and S. Schaal, Neural networks : the official
journal of the International Neural Network Society 21
4, 682 (2008).

[10] D. P. Kingma and J. Ba, Adam: A Method for Stochastic
Optimization (2017).

[11] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao,
and A. Akella, Multi-resource packing for cluster sched-
ulers (2014).

[12] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and
P. Abbeel, (2017), arXiv:1502.05477 [cs.LG] .

https://github.com/angelbeshirov/resource-management
https://github.com/angelbeshirov/resource-management
https://arxiv.org/pdf/1905.03094.pdf
https://arxiv.org/pdf/1905.03094.pdf
https://arxiv.org/pdf/1905.03094.pdf
https://arxiv.org/pdf/1907.12916.pdf
https://arxiv.org/pdf/1907.12916.pdf
https://people.csail.mit.edu/alizadeh/papers/deeprm-hotnets16.pdf
https://papers.nips.cc/paper/2017/file/c2ba1bc54b239208cb37b901c0d3b363-Paper.pdf
https://papers.nips.cc/paper/2017/file/c2ba1bc54b239208cb37b901c0d3b363-Paper.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.452.7280&rep=rep1&type=pdf
https://link.springer.com/book/10.1007/978-1-4612-5056-2
https://link.springer.com/book/10.1007/978-1-4612-5056-2
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://dl.acm.org/doi/pdf/10.1145/2619239.2626334
https://dl.acm.org/doi/pdf/10.1145/2619239.2626334
https://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1502.05477

	Introduction
	Methods
	Results
	Conclusion and outlook
	References

