
Snake Game using Deep Reinforcement Learning
1Department of Mathematics and Informatics, St. Kliment Ohridski
University of Sofia, 5 James Bourchier Blvd, 1164, Sofia, Bulgaria

(Dated: January 23, 2021)

Abstract The objective of this project is to conduct experiments with different approaches to-
wards solving the popular 2D ”Snake” game. Several studies have reported achieving better results
using Deep Reinforcement Learning techniques in comparison to the traditional Machine Learning
methods. Thus, the proposed solution to the problem at hand is to apply Deep Reinforcement
Learning algorithms for 3 modes of the game: standard, with a wall and with a maze. Our research
compares Deep Q-Learning using Prioritized Experience Replay, Double Deep-Q-Networks and Du-
eling Deep-Q-Networks applied on each mode for 100 games and to draw a conclusion which of them
achieves the best results in the respective situations.

I. INTRODUCTION

This report presents a comparison between the over-
all performance of 3 reinforcement learning agents, along
with relevant technical information regarding the Deep-
Q neural networks that have been used for the purpose of
solving the 2D “Snake” game. The results of this inves-
tigation provide insight into how the different optimiza-
tions on top of the Deep-Q Networks [DQN] perform in
multiple game modes and allow us to draw a conclusion
which of them achieves the highest result in the respective
situation. The experiments outlined in this paper can be
easily replicated using the command-line interface, al-
lowing further extensibility of the proposed comparative
analysis.

II. METHODOLOGY

The base approach that we have selected is to use
Deep Q-Networks as they have been proven to be ef-
ficient for playing Atari games (Mnih & Kavukcuoglu,
2013 [1]) and other games such as Cartpole (Roibu, 2019
[2]). However, to alleviate the risk of sparse and delayed
rewards due to the Deep-Q Learning naive reward mech-
anism in the context of the ”Snake” game, our team has
used DQN optimization techniques to increase the per-
formance. The main focus of the experiments was to
compare both the average and highest scores of Deep
Q-Learning using Prioritized Experience Replay, Double
Deep-Q-Networks and Dueling Deep-Q-Networks for 100
games for each algorithm and game mode. All of the
experiments were conducted on a custom ’Snake’ setup
(pulled from ’pygame’ package in Python) running on
Google Colab GPUs with 11 inputs of the network as
proposed in (Vinay & Aman, 2019) [3]):

1. information about whether there is an immediate
danger in any of the directions;

2. the direction of the snake relative to the game
board at a specific point in time;

3. relative position of the snake’s head - whether it is
below, to the left, to the right, or above the food
on the board.

At each step, the agent can receive one of the following
rewards:

• -10 - if the snake agent hits wall or bites its body;

• 10 - if the snake agent eats the apple;

• 0 - otherwise.

The action space consists of the snake’s directions - UP,
DOWN, RIGHT, LEFT, and the grid coordinates form
the state space. Adam algorithm was used for optimiza-
tion.

The following sections elaborate on the algorithms that
we have experimented with.

A. Deep Q-Network using Prioritized Experience
Replay

Deep Q-Network requires a lot of data and even then, it
is not guaranteed to converge on the optimal value func-
tion [4]. In fact, there are situations where the network
weights can diverge or oscillate, due to the high correla-
tion between actions and states. The technique experi-
ence replay is usually used to resolve that problem. This
technique consists of a large buffer containing the past
experience, called replay buffer/memory. Each experi-
ence is a tuple (S,A,R, S′). In the original experience
replay method, the DQN samples experiences randomly
from the replay buffer without considering their quality.
Because of that, its optimized version, called prioritized
experience replay, was used when training the network.
Prioritized experience replay assigns weights to experi-
ences in memory to select batches that may be richer for
learning. However, using just priorities to select batches
would cause severe overfitting. Thus, priorities are ad-
justed to act as probabilities for samples to be selected.

Priorities are calculated by the formula:

pi = erri + e

where e is a predetermined constant.
Priorities calculation is based on the error because

samples with higher error have big difference between
expectations and reality, meaning there is more to learn



2

from these samples. The constant e ensures a probability
of selecting other samples to avoid overfitting.

The probabilities for selection are chosen using the fol-
lowing equation based on priorities:

P (i) =
pai∑
k

pak

The exponent a ∈ [0, 1] determines how much prioriti-
zation is used. When a is 0, it corresponds to the uniform
case, when a is 1, then the highest priority samples will
be preferred.

The replay memory is implemented as a binary tree
structure, called sumtree, because each node is equal to
the sum of its leaves [3]. The leaves represent priori-
ties. The complexity of update and access operations is
O(log(n)), which is faster than an ordinary array.

When sampling past experience from the memory, a
random number is generated between 0 and the total
number of leaves. That number is called a sampling
value. Then, the tree is traversed using the following
conditions:

1. if the left child value is greater than the current
sampling value: visit the left child node;

2. else, visit the right child node with a new sampling
value equals to the current sampling value minus
the left child node’s value

B. Double Deep Q-Networks

According to the optimal policy in Deep Q-Learning,
the agent tends to take the non-optimal action in any
given state only because it has the maximum Q-value.
Such problem is called the overestimations of the action
value (Q-value). To prevent this, Double Q-Learning can
be used. Double Q-Learning uses two different action-
value functions, Q and Q‘, as estimators. Even if Q and
Q‘ are noisy, these noises can be viewed as uniform dis-
tribution. Q function is for selecting the best action a
with maximum Q-value of next state. Q‘ function is for
calculating expected Q-value by using the selected ac-
tion a from Q. Double Q-Learning implementation with
Deep Neural Networks is called Double Deep Q-Networks
(Double DQN). Double DQN uses two different Deep
Neural Networks: Deep Q-Network (responsible to cal-
culate Q) and Target Network (responsible to calculate
Q‘). This method is particularly useful to avoid those
situations where the discrepancy between the neural net-
works causes them to recommend totally different actions
given the same state, thus, reducing harmful overestima-
tions and improving the performance[5].

The implementation of Double DQN is with a periodic
update of the Target Network after every 5 moves by the
snake agent, and also after every game. This optimiza-
tion allows the Target Network to be updated periodi-
cally so that it does not have the same parameters as

Q-Network. As a consequence Double DQN has inde-
pendent action selection and evaluation.
Basic Double Q-Learning equation:

Q(st, at) = Q(st, at)+α(Rt+1+γ(Q‘(st+1, a))−Q(st, at))
(1)

a = max
a

(Q(st+1, a)) (2)

qestimated = Q‘(st+1, a) (3)

C. Dueling Deep Q-Networks

In the regular DQN both the value of the state s V(s)
and the advantage of taking action a in state s, A(s,a) are
calculated while estimating the Q-value. However, if the
value of the state is bad and all of the possible actions
lead to death, it brings no value to estimate the effect of
each action since the V(s) has also been calculated. The
Dueling Deep Q-Networks [6] are useful for the cases in
which it is unnecessary to know the value of each action
at every timestep - such as the snake game.

By decoupling state value and action advantage, the
network can learn if the state itself is valuable. For in-
stance, if the snake has curled in on itself: regardless of
what action it takes, it will eventually hit its own body
and die. Using Dueling DQN, the network learns that
the state itself is very poor, and no action it could take
would be helpful. Knowing that all possible actions are
irrelevant and ineffective, it should learn to avoid enter-
ing that state in the first place. [7]

This architecture helps in accelerating the training pro-
cess as only the value of a state can be calculated without
the Q(s,a) for each action at that state. Therefore, much
more reliable Q values can be found for each action by
decoupling the estimation between two streams. [8]

Because the dueling architecture shares the same
input-output interface with the standard DQN architec-
ture, the training process is identical. We define the loss
of the model as the mean squared error:

L(θ) = 1/N
∑

(Qθ(si, ai)−Q′
Θ(si, ai))

2 (4)

where

Q′(θ) = R(st, at) + γmax
a′i

Qθ(s
′
i, a

′
i) (5)

and take the gradient descent step to update the model
parameters.

The exact architecture of the network that has been
implemented as part of this research is outlined in Fig. 1.
The input represents the 11 properties that characterize
the state of the game that are passed to the first fully-
connected [FC] layer. The activation function used for
the hidden layers is ReLu. The output from the second
FC layer is split into 2 layers - the first one to calculate



3

FIG. 1: Architecture of the Dueling DQN

the value of the state, and another to output the advan-
tages of the potential actions for that state. For these
layers, SoftMax activation function is used in order to
reduce the output of the network in the range (0, 1).

III. RESULTS

Each agent played 100 games on all game modes: stan-
dard, with a wall and with a maze. The selected metrics
for comparison are mean score and max score. The re-
sults are presented in tables I and II

Prioritized DQN Double DQN Dueling DQN
Standard 45 37 45

Wall 33 9 21
Maze 4 3 5

TABLE I: Max score in 100 games

Prioritized DQN Double DQN Dueling DQN
Standard 7.30 8.04 7.47

Wall 4.57 2.5 3.83
Maze 0.6 0.9 1.02

TABLE II: Mean score in 100 games

Prioritized DQN and Dueling DQN have equal max
score for Standard Snake Game as shown in I and Dou-
ble DQN achieved lower max score. On the other hand,
Double DQN has higher mean score, so it has better over-
all score.

In wall mode Prioritized DQN’s result are significantlly
better than Dueling. Also, Double DQN’s result is quite
unsatisfactory compared to the other algorithms.

Maze mode was difficult for all the agents and their
max score is low. From II we conclude that Dueling DQN
achieved best results for this mode, because for most of
the games its score is at least 1.

FIG. 2: Prioritized DQN for Standard Snake Game, 100
games

FIG. 3: Double DQN for Standard Snake Game, 100 games

From 2 and 3 can be seen that, although Double DQN
achieves lower max score than Prioritized DQN, it tends
to have increasing score and much less spread.

An attempt to use Convolutional Neural Network was
made but the training was unsatisfactory slow and did
not achieve good results - for 1000 games, max score was
equal to 2. [7]

IV. CONCLUSION

This experiment adds to a growing corpus of research
showing that the Deep Q-Learning approach provides
a vast space for experimenting with games such as the
“Snake”. Our data indicates that the Dueling DQN and
Prioritizied DQN are the reasonable choice when the en-
vironment contains obstacles, while the Double DQN can
be used to reduce overoptimism, resulting in more sta-
ble and reliable learning. Maximum scores around 40-45
were achieved, but the agents reveal different behaviour



4

for the multiple modes, in which they have been tested –
for instance, in how they react for obstacles. Future re-
search should consider the potential reward options more
carefully, for example – the closer the snake gets to the
food item, the higher the reward. Furthermore, given our
results for Dueling DQN and Double DQN, an interesting
experiment that might provide better performance would
be to implement a Dueling Double DQN. The outcome
of our experiments suggests that we still have a long way
to go to in order to achieve extremely good results that
outperform human results, but also verifies that the cho-

sen approach is in the right direction as the results are
optimistic.

V. ACKNOWLEDGEMENT

The implementation and results of the algorithms can
be found in the following GitHub repository: https://
github.com/evigilatus/Snake_Bot.

[1] D. S. A. G. I. A. D. W. M. R. Volodymyr Mnih, Ko-
ray Kavukcuoglu, (Playing Atari with Deep Reinforce-
ment Learning).

[2] A.-C. Roibu, “Design of artificial intelligence agents for
games using deep reinforcement learning,” .

[3] T. L. M. S. G. T. S. P. Aman Hemani, Vinay Shah, “Snake
ai,” .

[4] J. Torres, “Deep q-network (dqn)-ii experience replay and
target networks,” .

[5] D. Liu, Introduction to Deep Reinforcement Learning

(2020).
[6] M. H. H. v. H. M. L. N. d. F. Ziyu Wang, Tom Schaul,

(Dueling Network Architectures for Deep Reinforcement
Learning).

[7] M. Z. A.-H. T. C. M. Y. Z. Zhepei Wei, Di Wang, “Au-
tonomous agents in snake game via deep reinforcement
learning,” .

[8] C. Yoon, “Dueling deep q networks,” .

https://github.com/evigilatus/Snake_Bot
https://github.com/evigilatus/Snake_Bot
https://arxiv.org/pdf/1312.5602
https://arxiv.org/pdf/1312.5602
https://arxiv.org/pdf/1905.04127.pdf
https://arxiv.org/pdf/1905.04127.pdf
https://medium.com/@aman546052/snake-ai-2b8a03e285cd
https://medium.com/@aman546052/snake-ai-2b8a03e285cd
https://towardsdatascience.com/deep-q-network-dqn-ii-b6bf911b6b2c
https://towardsdatascience.com/deep-q-network-dqn-ii-b6bf911b6b2c
https://davideliu.com/2020/01/13/introduction-to-deep-reinforcement-learning/
https://arxiv.org/pdf/1511.06581
https://arxiv.org/pdf/1511.06581
http://www.ntulily.org/wp-content/uploads/conference/Autonomous_Agents_in_Snake_Game_via_Deep_Reinforcement_Learning_accepted.pdf
http://www.ntulily.org/wp-content/uploads/conference/Autonomous_Agents_in_Snake_Game_via_Deep_Reinforcement_Learning_accepted.pdf
http://www.ntulily.org/wp-content/uploads/conference/Autonomous_Agents_in_Snake_Game_via_Deep_Reinforcement_Learning_accepted.pdf
https://towardsdatascience.com/dueling-deep-q-networks-81ffab672751

	Introduction
	Methodology
	Deep Q-Network using Prioritized Experience Replay
	Double Deep Q-Networks
	Dueling Deep Q-Networks

	Results
	Conclusion
	Acknowledgement
	References

