
begindocument/before

Examining the efficacy of Dueling Network Architectures
(Dated: January 23, 2021)

Dueling Networks for Deep Reinforcement Learning offer an alternative and in some cases a
more reliable approach to training agents. In this paper we will evaluate the performance of a
Duel Architecture Network trained on the Enduro environment. We’ll use the mean score over 100
episodes to compare the performance of

I. INTRODUCTION

In modern Neural Networks find an ever increasing
number of applications in our daily lives. For Reinforce-
ment Learning they offer a diverse toolbox that can be
used to train agents to perform important tasks. In the
previous decade there have been many research there had
been made several important advancement, pertaining to
the training of Deep Neural Networks to solve the Rein-
forcement Learning Problem. But different methods can
be applied to different sets of problems.

In Mnih et al[2] we are shown a method of training
Agents using a Deep Neural Network(DNN) in order to
approximate the Q-function of an environment, called a
Deep Q-Network. The agent performed very well, and
was event to outperform humans only after a week of
training. Only a short time after that, improvements
to the original original algorithm were made, Hasselt et
al.[3] , called Double DQN. It offered in some cases a
less optimistic agent, which resulted in fewer prediction
errors.

In this paper we will be looking at another approach,
that builds upon the aforementioned methods. We’ll be
using a slightly modified Neural Network, that was pro-
posed in Wang et al.[1]. The goal here is to test their
claim that the neural network offers better policy evalu-
ation and can be used to train a better agent for playing
Atarai 2600.

II. BACKGROUND

A. Mathematical definitions

We currently use an episodic environment, as described
in Sutton & Barto., that’s provided by the Arcade Learn-
ing Environemnt. The game we’re training the agent to
play is Enduro, a racing game. The state st provided by
the environment for timestep t, consists of N number of
frames st = {x0, ..., xN}. For our current needs we have
fixed N = 4. The action space provided by the Enduro-
v0 environment is |A| = 9. The rewards provided by the
environment are clipped to [−1, 1].

We use the definition of the values for a state-action
pair (s, a) and a state s, according to the policy π:

Qπ (s, a) = E [Rt |st = s, at = a, π] (1)

FIG. 1: This offers a visual representation of a Dueling Net-
work compared to a normal DQN network. As we can see
for the dueling network there are two streams that represent
the Advantage and State value functions which are then com-
bined in a single output layer. This figures was taken from
the research paper in Wang et al.[1]

V π (s) = Ea∼π(s) [Qπ (s, a)] (2)

Using the state-action function(i.e. Q function) can be
computed recursively in the following manner:

Qπ (s, a) = E [Rt |st = s, at = a, π] (3)

The optimal Q-function is also defined as Q∗ (s, a) =
maxπ Q

π (s, a). Using the optimal deterministic policy
we can see that a = arg maxa′∈AQ

∗ (s, a′) and that
V ∗ (s) = maxaQ

∗ (s, a). Following all of the above, we
get that the optimal Q function satisfies the Bellman
equation:

Q∗ (s, a) = E r + γ
′

max
a

Q∗ [(s′, a′) |s, a]

Another important piece of the puzzle in this paper is
the advantage function:

Aπ (s, a) = Qπ (s, a)− V π (s) (5)

2

If we use the optimal policy π we can see that
Ea∼π(s) [Aπ (s, a)] = 0. The advantage function gives us
measure of how important an action is a given state. We
can then rewrite the Q functiona as:

Qπ (s, a) = V π (s) +Aπ (s, a) (6)

This equation is the basis for the Dueling Network as
we will demonstrate later in this paper.

B. DQN and Double DQN:

For this paper we will be using a deep Q-network(Mnih
et al[2]), also knowns the DQN algorithm, in order to
approximate the values of the optimal Q-function.In or-
der to get the most accurate results, for this particu-
lar network we’ll be empoying the Double DQN(DDQN)
algorithm(Hasselt et al.[3]), as it was used in Wang et
al.[1].But first we will have to give an overview of Deep
Q-Learning.

For Deep Q-Learning in order to approximate a Q-
function we use a deep Q-network: Q (s, a; θ) with pa-
rameters θ. It’s optimized for the following loss func-
tions:

Li(θi) = Es,a,r,s′
[(
yi
DQN −Q (s, a; θi)

)2]
(7)and

yi
DQN = r + γmaxa′ Q (s′, a′; θ−)

where θ− are the parameters for the target network,
which is a second Q-network that’s used only for training.
A key improvement to DQN was to freeze the parame-
ters of that network for a fixed number of iterations and
update the online network with gradient descent. After
that fixed amount of steps the target network is updated
to use the parameters of the current online network and
the process keeps repeating until the training run is over.

The gradient update can be written as:

∇θiLi (θi) = Es,a,r,s′
[(
yi
DQN −Q (s, a; θi)

)
∇θiQ (s, a; θi)

]
(8)

This approach is an off-policy algorithm, since we pro-
duce datapoints using an ε-greedy policy which is dif-
ferent than the policy the agent is trying to learn. For
the ε-greedy we use a schedule that decreases the epsilon
as the number of iterations grow. We store all of the
datapoints in replay buffer and sample from there. The
batch size we’ve decided to use is 32 tuples structured as
(s, a, r, s′). The replay buffer handles the encoding of the
observed frames into a state of for arrays as described in
the previous subsection.

Making a single change to the DQN algorithm offers
superior results. DQN can lead to overoptimistic value
estimates as shown in van Hasselt et al.[3], 2010. Chang-
ing the target equation in this manner:

yi
DDQN = r +

(
s′, arg maxa′ Q (s′, a′; θi) ; θ−

)
. (9)

The gradient descent algorithm remains unchaged, but

it just uses the target yDDQNi instead of yDDQNi .

III. DUELING NETWORK ARCHITECTURE

In the Dueling Network Architecture research paper
by Wang et. al., we are presented with a different ap-
proach for constructing a Q-Network. This new network,
refered to as the dualing network, consists of 3 convolu-
tional layers just as described in the original paper for
Deep Q-Learning(Mnih et al., 2015[2]), but instead of
a single fully connected layer we create 2 parallel lay-
ers with 512 hidden units each. They can be looked as 2
streams of fully connected layers, one with |A| number of
outputs and the other with a single output.The two lay-
ers are used to calculate the Advantage and State value
estimates respectively. The key insight of the authors
of the specified paper was that, is that there are many
cases where estimating the value of each action choice is
unnecessary. For the Enduro game, moving either left
or right is unnecessary for most cases, save for when the
agent would want to avoid a collision.

In the training the Dueling Network outputs the result
of the two streams which is then combined in a post-
processing step shortly before calculating the loss. The
authors of the paper do specify that it should be done in
the last layer of the Dueling Network so as to provide the
same number of outputs as a normal(i.e. single stream)
DQN network. But in the training code that step offers
results that are equivalent to just combining them in a
single final layer. The reason why we must combine the
outputs is because we want this network to be trained
using conventional algorithms, such as DDQN.

For our research we’ll be using this equation in the
combination step:

Q (s, a; θ, α, β) = V (s; θ, β) +(
A (s, a; θ, α)− 1

|A|
∑
a′ A (s, a′; θ, α)

)
(10)

Lets explain why we need to use equation (10). We
could still build a parametarized version of equation (6),
described in the previous section such as this:

Qπ (s, a; θ, α, β) = V π (s; θ, β) +Aπ (s, a; θ, α) (11)

but in practice this results in poor performance for the
Q-Network.

If we recall this expression for equation (6) and that
Ea∼π(s) [Aπ (s, a)] = 0 for the optimal policy π, and that
for the deterministic policy a∗ = arg maxa′∈AQ (s, a′),
it follows that A (s, a∗) = 0. This is what the network
should approximate to after a large enough number of
iterations. The authors of the original paper specify that
equation (11) is unidentafiable in the sense that given Q
we cannot recover V and A uniquely, which means that

3

FIG. 2: In this example we compare the performance of a
Dueling Network to that of a Single Stream Network based on
the mean performance over 100 episodes. It should be noted
that not all of the hyper parameters used for the training are
the same for both of these networks. Due to some technical
difficulties we weren’t able to get results with the same ran-
dom seed. But both of these networks use the same epsilon
schedule for the epsilon greedy policy used to gather data-
points for the deep Q-Learning algorithm. As we can see the
Dueling Network slightly outperforms the normal one in the
beginning and but then starts to loose out. Both of them are
able to get out of the slump in performance around the mid-
dle of the iteration range, but the Dueling Network remains
stable and reaches a new maximum, while the Single Stream
Network keeps zig-zagging until it starts to reach a similar
mean value.

Q-Network will not be able to recognize all of the values
for the different state-action pairs.

Equation (10) enforces a stable optimization process.
There was one other version of the provided formula, but
it’s not relevant to this research paper. This is explained
in more detail in Wang et al.[1]

IV. RESULTS

For our experiments we created a Normal Single stream
Q-Network similar to the one described in Mnih et al.[2],
but with 1024 hidden units in the fully connected layer
of the network. This was done in order have an equal
number of parameters in both the single stream and the
Dueling Network. We’re going to use this as a baseline
for performance comparisons.

Both networks were trained for 5 000 000 iterations
using a batch size of 32. We have iterated over 6 differ-
ent groups of hyperparameters, but since we were using
Google Colab for training, there were timeouts on sev-
eral occasions. Unfortunately we weren’t able to run all
of the tests we wanted and the gathered data might prove
inconclusive. But from what we’ve seen the Dueling Net-
work does perform better at first. Also it’s worth noting
that both networks experience a massive drop in perfor-
mance around 2 500 000 iterations(within a margin of

several hundred iterations). We can see that in Fig. 2.
This we think can be explained by the fact that the re-
play buffer is filled completely with data points acquired
by using actions with the highest value provided by the
Q-Network itself and that the gradient descent entering
a region of a local minimum of the Loss function. And
from the results gathered the Dueling Network is able to
remain stable more often than the single stream network
at times. We don’t have enough data to make a conclu-
sive statement on the results, but from the current data
we are hopefull that this architecture can be used to of-
fer more robust and better performing estimators for the
Atari game environment.

V. CONCLUSION

After running several tests using both types of archi-
tectures we can see that Dueling Network shows promise
for future use. In Wang et al.[1], they were able to run
it over a multitude of games and in most cases it outper-
formed the single stream version of DQN. For future uses
we could include Prioritized Experience Replay(Schaul et
al.[4]) in the training algorithm in order to explore how
it will affect it’s performance. Also looing into how the
training will go for other games is an interesting topic.
Will it behave the same way as for Enduro? It also should
be noted that it could be beneficial to explore domains
outside of Atari Game Environments.

VI. REFERENCES

[1] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M.
Lanctot, N. de Freitas Dueling Network Architectures for
Deep Reinforcement Learning

[2] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.
A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller,
M.,Fidjeland, A. K., Ostrovski, G., Petersen, S., Beat-
tie, C., Sadik, A., Antonoglou, I., King, H., Kumaran,
D., Wierstra, D., Legg, S. and Hassabis, D. Human-level
control through deep reinforcement learning. Nature, 518
(7540):529–533, 2015.

[3]van Hasselt, H., Guez, A., and Silver, D. Deep
reinforcement learning with double Q-learning. arXiv
preprint arXiv:1509.06461, 2015

[4]Schaul, T., Quan, J., Antonoglou, I., and Silver, D.
Prioritized experience replay. In ICLR, 2016. [5]Belle-
mare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.
Acknowledgements I would like to thank the course

lecturer Marin Bukov, Ph.D. for allowing me to use some
of his code to help setup the training environemnt. Also
if you want to look at the code used for the training go
to: https://github.com/dmitsov/RL-Dual-Networks

https://github.com/dmitsov/RL-Dual-Networks

	Introduction
	Background
	Mathematical definitions
	DQN and Double DQN:

	Dueling Network Architecture
	Results
	Conclusion
	References

