Using RL to Sustain High-density Populations in Conway’s Game of Life
(Dated: January 24, 2021)

Abstract: In this project we introduce a reinforcement learning agent in Conway’s Game of Life
with the objective to sustain long-living, high-density populations. We experiment by proposing a
subdivided variant of the environment, alongside the standard tabular method problem definition.
We find that the agent creates highly correlated, static structures of living cells. We observe fast
learning rate for small grid sizes. Finally, we approach the task with a deep Q-network and observe

similar results.

I. INTRODUCTION:

Cellular automata are discrete, local dynamical sys-
tems, which since their discovery have found application
in computability theory, physics, and various areas. A
two-dimensional cellular automaton is based on a grid of
cells, each of which can be in a finite number states at
a given point in time - for example "live” or "dead”, or
71”7 or ”0”. For each cell, its state at the next time step
depends on the states of its neighbours and some fixed
rules. The initial configuration of the grid is given by the
user.

The “Game of Life”, despite its name, is a zero-player
game. It was created in 1970 by the mathematician John
Horton Conway as a two-dimensional cellular automaton.
Since then, it has inspired many simulations of physical
and biological systems due to its analogies with the rise,
fall and alterations of a population of living organisms.
[1] In the original model of ”Game of Life” (GoL) cells
can be either ”live” or "dead” at a given time step. The
game evolves according to the following simple rules:

e Any live cell with two or three live neighbours sur-
vives, otherwise it dies.

e Any dead cell with exactly three live neighbours
becomes a live cell.

A wide variety of interesting spatial behavior can
emerge in course of evolution from an arbitrary initial
state in “Game of life”. The most popular structures
are:

e 7Still lifes” - stable patterns, which do not change
once they appear.

e ”Oscillators” - patterns with periodic behaviour.

e ”Spaceships” - self-localized patterns which trans-
late across the grid.

Our goal in this project is to introduce a player into
the game with the objectives to learn the rules of the
automaton and preserve as much life as possible. This
allows us to study the shift in the natural evolution of a
system which obeys the rules of ” Game of Life”, if a small
mutation takes place at each time step. A goal similar
to ours has been pursued by [2] and [5].

II. METHODS:

Reinforcement learning in ”Game of Life”: We
introduce a reinforcement learning (RL) agent which in-
teracts with the game. The environment is a finite two-
dimensional grid of size n x n with periodic boundary
conditions on its sides, evolving by the rules of GoL. The
state at a given point in time is the configuration of live
and dead cells in the environment. The state space in our
framework is #S = 2"*™. We allow the agent to revive
one cell in each generation before the natural evolution.
Thus the action space for each state is #4 = n2. If a
live cell is selected we ignore the action. The reward is
defined as the density of living cells in each generation
after evolution:

2
n
1, if the 3" cell is live
R= z; i where 2; = {O, otherwise
i
The game can end in two different ways: when there
are no live cells, or when the number of generations has
exceeded its maximum set value.

Algorithms: For our purposes we use Q-Learning
[1], a reinforcement learning algorithm that can be
applied to sequential tasks. It is an off-policy algorithm
since the Q-Learning function uses a behaviour policy,
which is exploratory in nature, to learn the policy
that maximizes the expected value of the total reward
starting from the current state. To learn the state-action
value function Q(S,A) we apply the following update
rule iteratively at each time step:

Q(St, Ay) « Q(St, Ay) + a[Ri+
ymaz,Q(St+1, A/) —Q(S, Ay)] (1)

However, tabular methods are very limited with
respect to the state space. For problems with larger
state spaces Deep RL algorithms are more suitable.
Deep Q-Learning trains a function approximator to
learn the state-action value function. This approximator
is a deep neural network, with parameters 6. Since the
states are grids and the update rules are local i.e. 3 x 3
matrix is used to determine the state of the center cell,
we can model GoL. with a convolutional neural network.

Approaches: We use the following three approaches
for our task:

1. Q-learning on a small grid. In this method the
agent is allowed to act on any cell of the grid. In
tabular methods we need to restrict the size of our
grid to up to 20 cells total. To avoid this restriction
we use a dynamic structure instead of 2D array for
containing the action-value pairs. This optimiza-
tion allows us to run the method on grids with up
to 50 cells.

2. Q-learning on a large subdivided grid. In or-
der to circumvent the limitation from 1. we try
to divide a larger grid into smaller regions of a size
feasible for tabular Q-Learning. Now the agent also
has to choose in which subregion to act. The ac-
tion space expands by the number of subregions,
but the state space and Q-table dimensions stay
the same. We break the action down in two parts:
epsilon-greedy selection of a subregion and epsilon-
greedy selection of action as in 1. The downside
of this method is that to the agent the subregions
are not connected and their evolution is now non-
deterministic.

3. Deep Convolutional Q-Learning. To be able
to learn on all grid sizes, we use deep Q-learning.
The action space is the same as in 1. Our network
consists of one convolutional layer, followed by one
or two hidden dense layers. We collect our tran-
sitions inside a buffer. For calculating the loss we
use a target deep network.

Statistical analysis: All approaches are tested first for
a fixed initial state and then for a random one. To evalu-
ate the performance of the methods we graph the rewards
as a function of game evolution. In order to understand
the agent’s behaviour we visualize the games.

We inspire from Schulman and Seiden [3] and implent
their proposed variant of entropy for the Game of Life.
A system that begins randomly populated will, under the
propagation rules of the Conway game, develop structure
and correlations. One way to measure the increasing or-
der in the system is by using a quantity analogous to
entropy in statistical mechanics. The general idea is to
subdivide the system and measure the extent to which
living cells do or do not cluster.

A n x n board is broken into subregions of size j x j.
Coarse-grained description of the state of the system is
provided by the sequence m; € [1,(n/§)?], where m; is
the number of live cells in the i-th subregion. The entropy
associated with this coarse-grained description is given by
the logarithm of the total number of microscopic states
that can be associated with the given sequence. Thus

1 (n/4)? ;2
S = ﬁlog Z1;[1 (mz) (2)

Such defined, the entropy is strongly related to the
density so we will normalize it by dividing by that of a

random board with the same density. Normalized en-
tropy is equal to one for boards with randomly placed
live cells. The more ordered the structures on the board
are, the lower the normalized entropy will be.

IIT. RESULTS:

We have implemented each of the above approaches
and obtained the following results.

Q-learning on a small grid: We trained the
model on square grids of size up to 7 x 7. For all grids
we observe similar behaviour when training on fixed and
on random initial states.

For grid sizes 4 x 4 the learning rate is fast. The optimal
solution achieved from many different initial states is
a still life of the type stripes (See fig. 1). For highly
populated or underpopulated initial states dying off is
inevitable in the first few steps.

For grid sizes 5 x 5 and 6 x 6 we continue to arrive at
various still life forms. However, they are achieved in a
different number of steps and have density of around 0.2.
We also observe a few oscillators. There are still some ini-
tial states that die off but not as fast as without an agent.

generation 12
live: 8.0

generation 47
live: 6.0

(a) type 7stripes” (b) typical still life on a

5 x 5 grid

generation 131

generation 30 3
live: 11.0

live: 11.0

(c) typical still life on a
5 x 5 grid

(d) still life and oscillator

FIG. 1: Still life

For 7 x 7 grids we rarely observe still life. The
agent sustains the game for long periods of time. The

Rewards averaged over 50 games after Q-learning for a fixed initial state

0.5
0.4
5 037 —— without agent
g —— taking random actions
u 0.2 - —— using leamed Q-function
01
0.0

T T T T T T
0.0 25 5.0 75 o0 125 150 175
generations

Rewards averaged over 50 games after Q-learning for a fixed initial state

= without agent
0.5 A —— taking random actions
—— using learned Q-function
0.4 4
=
E 0.3 1
m
024
011
0.0 4

T T T
0 50 100 150 200 250 w00 30 400
generations

Normalized entropy averaged over 100 games

] - g et
100 W’I ,‘Jh'lll W'lﬂhb"dm " W“ﬂ!ﬂh e i

0198 1

—— without agent
random actions

0.96 .
—— learned Q-function
0.94 4
A
092
T T T T T T
o 50 100 150 200 250
generations

FIG. 2: Comparison of averaged rewards without an
agent, with a random agent and using learned for a
fixed initial state Q-function for a 4 x 4 grid (top), a
7 x 7 grid (middle). Bottom: Normalized entropy for a
6 x 6 grid.

evolution is non-periodic, alternating between high and
low density states. (See fig. 2).

We compare the normalized entropy of states created by
our agent with the entropy of the natural evolution and
the random actions. Taking random actions completely
erases the order that emerges. That is why the entropy
with random actions quickly goes to one. Contrary
to this behaviour, games with agent tend to have low
entropy. Still lifes are by nature ordered structures.
However, even when the agent can not lead the game
to a still life it still creates structures of cells which are
highly correlated. (See fig. 2, bottom)

Q-learning on a subdivided grid: We run the
method for subregion sizes up to 8 x 8 . When trained
on the whole state space the agent behaves worse than
the random action evolution, similar to the natural
evolution. Training with a fixed seed leads to a slightly
better behaviour in the first few steps, progressing
identically to random evolution.

Deep Convolutional Q-Learning: For a 4 x 4
grid and fixed seed the results are the same as those
with tabular methods. The model converges fast to still
life of type stripes. When training with a random initial
state we still observe the same solution, with other forms

Rewards averaged over 50 games after Q-learning for a random initial state

—— without agent
0331 —— taking random actions
0.30 1 —— using leamed Q-function
0.25 A
E
o 020 1
=
u
015
010
0.05 1
T r . . i .
0 10 20 30 a0 50
‘generations

Rewards averaged over 50 games after Q-learning for a fixed initial state

—— without agent

04 = random actions
—— learned Q-function

0.3 1

reward

0.2 1

01 1

0.0 1

T T T T T
o 50 100 150 200 250 300 350 400
generations

Rewards averaged over 50 games after Q-learning for a random initial state

—— without agent
0331 = random actions
0.30 4 —— learned Q-function
0.25 1
=
[
£ 020
o
0.15 A
0.10
0.05 1
T T T T T T T
o 50 100 150 200 250 300
generations

FIG. 3: Comparison of averaged rewards without an
agent, with a random agent and using learned
Q-function for a 4 x 4 grid (top), a 8 x 8 grid and fixed
initial state (middle), and 8 x 8 grid and random initial
state (bottom).

of still life occurring occasionally. However, many games
die off quickly, which brings the average down and the
overall performance is not as good as the corresponding
tabular methods.

For larger grids with fixed seed learning of still life is
achieved, but after more steps (fig. 3, middle). Learning
is significantly slower without a fixed seed. After training
for a feasible time, only slight improvement over random
actions is registered (fig. 3, bottom).

IV. CONCLUSION:

In this project we propose a few strategies to introduce
a RL agent in the Game of Life by Conway. They were
able to produce different variants of still lifes and oscilla-
tors. We find that the standard tabular method is robust

for this problem, but limited. Our modified approach
does not achieve better results than the standard one,
which is probably due to the introduced uncertainty.
Our final method is deep Q-learning. When implement-
ing it we frequently varied the hyper-parameters and
the architecture of the network. We managed to obtain
good results, but the learning was not very stable and
we could not improve on the tabular methods. As to
our knowledge it is yet to be proven that RL can find an
optimal solution for arbitrarily large grids. Our studies
may be improved by allowing the agent to change more
than one cell per step.

Acknowledgements: ~ We would like to acknowledge
that the computational work reported on in this paper
was partly performed on Google Colaboratory.

[1] Lorena Caballero, C Germinal, and H Sergio. Game of life:
simple interactions ecology. Mariana Benitez, Octavio Mi-
ramontes € Alfonso Valiente-Banuet. “Frontiers in FEcol-
ogy, Evolution and Complexity.” (Mezico: Coplt ArXives).
TS0012EN, 2014.

Simon M Lucas, Alexander Dockhorn, Vanessa Volz, Chris
Bamford, Raluca D Gaina, Ivan Bravi, Diego Perez-
Liebana, Sanaz Mostaghim, and Rudolf Kruse. A local
approach to forward model learning: Results on the game
of life game. In 2019 IEEE Conference on Games (CoG),

2

pages 1-8. IEEE, 2019.

[3] LS Schulman and PE Seiden. Statistical mechanics of a
dynamical system based on conway’s game of life. Journal
of Statistical Physics, 19(3):293-314, 1978.

[4] Richard S. Sutton and Andrew G. Barto. Reinforcement
Learning: An Introduction. MIT Press, Cambridge, MA,
2017.

[5] Lucas Wilson. Conway’s game of life controlled with rein-
forcement learning. github, 2018.

	Introduction:
	Methods:
	Results:
	Conclusion:
	References

