
Solving the Rubik’s Cube with Deep Reinforcement Learning

Abstract In this paper we present a reinforcement learning approch for solving Rubik’s Cube.
This classic combinatorial puzzle has large state space with single goal state, which poses great
chalenge in the field of AI. Any randomly generated sequence is unlikely to reach the goal state.
Our method combines deep learning with classic reinforcement learning and path finding methods.
We compare the performance of 2 deep neural network architectures as value approximators in
reinforcement learning context. Combined with search algorithm, both of them have successfuly
solved all test configurations that are at distance less than 10 moves from the goal state.

1. INTRODUCTION

The Rubik’s Cube is a well know combination game,
that has tempted the minds of AI researches for a long
time. With state space ≈ (4.2 ∗ 1019) no brute force
or dynamic programming algorithm has chance of solv-
ing it. In 2014, it was shown [1] that any valid cube
can be optimally solved with at most 26 moves in the
quarter-turn metric. For the remainer of this paper we’ll
use quater-turn metric. Pattern-based databases [2] have
proven to solve the Rubik’s Cube, but these methods can
be memory intensive and puzzle specific. A major goal
in artificial intelligence is to create algorithms that are
able to learn how to master various environments without
relying on domain-specific human knowledge.

Recently reinforcement learning algorithms have
achieved superhuman results in games with even larger
state spaces (Go [3], Chess, Shogi [4]) without using
human data. These algorithms iterate between two poli-
cies - a fast policy and a slow policy and the feedback
from the slow policy is used to improve the fast policy.
But these are two player games, where reward is always
given at the end of the game to one of the players. The
Rubick’s Cube however is single player game and reward
is only given when the solved state is reached. We’ve
drawn inspiration from DeepCube [5] and DeepCubeA
[6] algorithms. Both of them have proven to efficiently
solve the puzzle with deep reinforcement learning and
search. To overcome the single reward problem the
authors in [5] used Autodidactic Iteration - an algorithm
that trains a value function on a distribution of states
that allows the reward to propagate from the goal state
to states farther away. This is the approach we take in
this paper. We compare the performance of 2 different
value approximators - a convolutional neural network
and fully-connected neural network. The training of the
neural network can be regarded as TD-learning with
greedy policy [7].

2. ENVIRONMENT

From reinforcement learning perspective the Rubick’s
Cube puzzle is Markov Descision Process in determinis-
tic episodic environment. The state of the environment
is the cube’s state, the possible actions are all possible
moves and rewards are -1 or 1. The terminal state is the
solved state.

We use different representations of the environment as
inputs to the fully-connected and convolutional network:

FIG. 1: The ”Cubelet” model

The main corner stickers are shown in dark blue with their
possible locations are in light blue. The main edge stickers
are shown in orange with their possible locations in light

orange. Center cubelets are ignored.

Naive

This model is the input for the convolutional network.
The cube is represented by the colors of it’s 54 stickers.
Each side is 3 × 3 and there are 6 sides which we stack
horizontally to arrive at 3×18 image. Then each color is
one-hot encoded (because color in this case is qualitative
data, not quantitatve). The state is 3 × 18 × 6 one-hot
tensor.

Cubelet

The ”Cubelet” model (fig. 1) is more complicated and
is used as input to the fully-connected network. The
state of the cube can be uniquely identified based on
the configuration of the 26 cubelets. Thus we can track
their position and rotation. Ignoring the center cubets
(whcich are always fixed), only 20 remain. Further each
cubelet’s position and rotation can be infered from the
position of only one of it’s stickers (we call this sticker
”main”). Corner cubelets have 3 stickers. There are
8 corner cubelets. Each ”main” corner sticker can be
in one of the 24 corner sticker positions. This results
in 8 × 24 one-hot matrix. Similarly there are 12 edge
cubelets and each has 2 stickers. Again 24 possible
positions for the the ”main” edge stickers. This results
in 12 × 24 one-hot matrix. Stacking the corner and the
edge matrices produces 20 × 24 one-hot matrix. This is
the state.

An action is rotation of one of the sides by 90 degrees
clockwise or counter-clockwise. Moves are labeled with
the letter of the face they are rotating (F for front)



2

and an optional apostrophe if the rotation is couner-
clockwise. Since there are 6 sides, there are 12 possible
actions in total. After selecting an action in state st+1

the agent observes a new state st+1 = A(st, at) and
receives a scalar reward, R(st+1), which is 1 if st+1 is
the solved state, -1 otherwise.

3. TRAINING
3.1 State Exploration
We use a variant of TD-learning to fit the value

function approximators. The dataset is generated using
the method proposed in [5]. This method consists of two
steps:

1. Generate training sequences
To generate training sequences we start from the
solved state sterminal and scramble the cube k times
to generate a sequence of k cubes. We do this l
times to generate l episodes and a total number of
N = l ∗ k training samples.

2. Evaluate targets
For each training sample xi ∈ X, we generate a
training target yi. To do so, we evaluate all 12
children of xi with the current value appoximator
(fig. 2) The recieved estimates of the children’s
values are added with their respective rewards and
the maximum is taken as the value for the current
state sample [10]:

yi = max(vxi(a) +R(a)) for a ∈ {U,U ′, ..., F, F ′}

X0 X1 X2 Xk Xn

U U’ FL F’

FIG. 2: Data Generation

For each cube Xk in the episode sequence all 12 actions are
taken (depth-1 BFS) to generate it’s children. Then it’s

target is updated

3.2 Training
At the begining of each epoch a new training sequece

(Step 1) is generated. In each epoch the training
sequence is used as a replay buffer and several iterations

are run. At the begining of each iteration the target
values for the training samples are re-evaluated (Step 2)
using the most recent parameters for the value function.
Having updated the target values, we sample random
batches from the replay buffer multiple times. For
each batch we compute the MSE loss and update the
parameters with Nesterov momentum optimizer.

Algorithm 1 Train Loop

1: for epoch = 1, 2, . . . , E do
2: X ← N scrambled cubes
3: w ← weights for each cube
4: for iteration = 1, 2, 3, . . . , I do
5: for xi ∈ X do
6: for child ∈ xi.children do
7: yi(child)← f(child) + reward
8: end for
9: yi ← max(yi(child))

10: end for
11: for sample = 1, 2, 3, . . . , S do
12: update f parameters using the targets yi
13: end for
14: Update trust range using GreedyBFS
15: end for
16: end for

3.3 State sampling
For computing the loss we use a state sampling pro-

cedure propossed in [5]. For each train sample xi we
assing a weight wi inversely proportional to it’s distance
to sterminal, wi = 1

d(xi)
. One reasoning behind this is

that some cubes scrabled k times can be solved with less
moves, thus their real distance to sterminal is less than
k. [11] Thus, for an episode [sterminal, s1, s2, s3] the
weights will be [w1 = 1, w2 = 0.5, w3 = 0.333]. When
computing the loss for a batch of samples, we multiply
the loss from each training sample by the weight value
of that sample. One novel modification that we propose
to the state sampling procedure is the so called ”trust
range”. At the end of each epoch we evaluate the value
function with Greedy Best First Search solver. We feed
the solver k-scrambled cubes to see whether it is able to
solve all of them. If the solver solves all cubes then k
is added to the trust range, and if not - the evaluation
procedure terminates and we obtain the trust range (e.g.
trust range = {1, 2, 3}). We use the trust range in the
next epoch when we compute the state sampling weights.
Training samples at a distance within the trust range all
have weights equal to 1 and from there on we use the in-
verse distance function. Thus, for an episode [sterminal,
s1, s2, s3, s4, s5] we would have the following weights
[w1 = 1, w2 = 1, w3 = 1, w4 = 0.5, w5 = 0.333].

Another small modification that we use is
wi = 1

d(xi)α
, where α ∈ [0, 1] is decreased on each epoch.

We found that both modifications led to slightly better
training. A pseudocode for the training algorithm is
given in Algorithm 1.



3

4. NEURAL NETWORK ARCHITECTURES
We’ve explored 2 different neural networks (fully-

connected and convolutional) as value function approxi-
mators. The fully-connected network uses the ”Cubelet”
environment, while the convolutional uses the ”Naive”
one. The ”Naive” 3× 18× 6 environment is simpler and
more comprehensible, but it’s downside is that it treats
the state as bag-of-stickers. The ”Cubelet” environment
is more spohisticated and preserves information con-
straining the positions of the stickers.

4.1 Convolutional network
Another downside of the ”Naive”” environment is that

it represents a 3D object with 2D projection, resulting
in inherent loss of information. Stickers neighbouring
along the third dimension are wildly separeted in the 2D
projection. In order to solve this issue we propose the
following architecture (fig. 3):

1. The first layer of the network is a convolutional
layer with filter size 3 × 3 and stride 3, resulting
in a filter map of size 1 × 6. Each neuron of the
filter map ”sees” entirely only one side of the Ru-
bik’s Cube. We use 32 filter maps and the resulting
output volume is 1× 6× 32. Each 1× 1× 32 vector
in this volume represents a feature vector for one
of the cube’s sides.

2. The second layer of the network is a convolutional
layer with filter size 1×2 and aims to produce com-
binations between all possible pairs of the feature
vectors from the previous layers. To do this we use
a block of 5 layers that are run in parallel. Each
layer has a different stride (1 through 5) and pro-
duces a different number of pairs. The outputs of
these layers is then concatenated to produce the fi-
nal output of size 1 × 15. We use 256 filter maps
and the resulting output volume is 1× 15× 256.

FIG. 3: The convolutional network

When trying to go deeper we observed that increasing
the complexity by adding a couple of convolutional lay-
ers greatly reduces the learning capabilities of the model.

While in supervised learning neural network models with
4 or 5 convolutional layers have no trouble to generalize
beyond the training set, in reinforcement learning we are
dealing with a moving target. This fact exacerbates the
vanishing gradient problem resulting in increased diffi-
culty of training.

To overcome this problem we use the technique of
residual learning described in [8]. In our model we use
a block of 3 convolutional layers with filter size of 1× 3,
stride of 1, padding of 1, and 256 filter maps. The re-
sulting output volume is 1 × 15 × 256 matching exactly
the shape of the input volume. Before applying the final
non-linearity we use an identity shortcut connection to
add the input volume to the output volume.

Instead of a pooling layer, we perform downsampling
using a convolutional layer with filter size 1 × 3 and a
stride of 3. The resulting output volume has shape
1× 5× 256.

Finally, we flatten the output and run it through a
fully connected hidden layer with size 2048, and then
through a fully connected output layer with size 1.

4.2 Fully-connected network
The fully-connected network consists of 3 hidden lay-

ers with sizes 2048, 1024, 512. The activation function
is ReLu.

5. SOLVER
We employ an A* search algorithm [9] using the

outputs of the value approximators as heuristic function,
estimating the goodness of the states. We’ve also
experimented with Monte Carlo Search Tree augmented
with value & policy approximator [5], but we’ve found
that A* performs consistently better in terms of runtime
efficiency and solve performance. In [6] the authors
found that A* was also better in terms of solution path
length. Also, the augmented MCST in [5] has two
hyperparameters - L (virutal loss) and C, which are
subject to fine-tuning. The core idea of the A* algorithm
is to use two functions G and H, where G(s) gives the
cost of the path from the start state to state s and H(s)
gives the estimated cost of the cheapest path to the goal
state, starting at s. In our context G(s) gives the number
of moves already made to arrive at state s and H(s)
gives the value of the state. Since states closer to the
terminal state will have greater value than states further
our objective is to follow a path maximizing H(s)−G(s).

6. RESULTS
During training we monitor three quantities:

• the mean loss value during each iteration

• the loss value at the first iteration in the begining
of each epoch

• L2-regularization loss in the begining of each epoch

The mean loss value during each iteration displays the
training progress of the model within one epoch. We



4

see that (fig. 4) during each epoch the optimizer easily
adjusts the parameters so that the model fits the data.
On the last iteration of the epoch the value of the loss
is almost equal to the value of the L2-regularization loss,
meaning that the data loss is approximately 0.

The loss value at the first iteration is an implicit mea-
surement of the out-of-sample performance of the model.
At the begining of every epoch a new dataset is generated
and model training starts afresh. Looking at the figure
displaying the loss history we can see that the first loss is
always bigger than the iteration mean loss from the pre-
vious epoch, however, it gradually decreases throughout
the training.

0 500 1000 1500 2000 2500 3000 3500 4000
Iterations

0.05

0.10

0.15

0.20

0.25

0.30

Lo
ss

First loss
Iteration loss

FIG. 4: Epoch mean loss vs. Iteration first loss

The convolutional network was trained for 150 epochs,
26 iterations, 1000 episodes of length 15 for 9 hours. Dur-
ing training it saw approximately 2 milion cubes.

The fully-connected network was trained for 300
epochs, 6 iterations, 1000 episodes of length 50 for 30
hours in total. During training it saw approximately 15
million cubes.

k=10 k=11 k=12 k=13 k=14 k=15
Greedy FCNN 46 35 26 18 12 8
Greedy CNN 46 35 26 17 13 9
A* + FCNN 99 98 93 84 72 57
A* + CNN 100 97 84 62 54 46

TABLE I: Results. Percentages of solved solved cubes from
k-scambled test set

Our results are significantlly weaker than the results
in [5] and [6]. We think that the reason for this is the
insufficient training time (For example DeepCube [5] en-
countered approximately 8 billion cubes - a number sig-
nificantlly larger that ours.) While the bootstraping of
the network happens quickly (fig. 5) (it learns fast the
true values of the states close to sterminal) it takes signif-
icant time to learn the true value of the states at distence
greater than 10 from sterminal. Another difficulty is that
the ”true” value function is not continuous - states that
are close to sterminal in input space may be very far in
output space. Third, we’ve used smaller models for the
neural networks. We evaluate the 2 value approximators
combined with A* on test set of size 15 × 1024 consist-
ing of 1024 k-scrambled cubes for k ∈ [1, 15]. Results
are shown in table I. Both value approximators combined
with A* were able to solve 100% of all test configurations
scrambled less than 10 times.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Epoch

1
3

5
7

9
11

13
15

17
19

21
23

25
k

8

6

4

2

0

FIG. 5: Mean value of f(sk) − f(s1) during training. We
see that as training progresses states farther from sterminal

receive lower values.

Acknowledgements The code is available at
https://github.com/xeparc/deepcube

[1] T. Rokicki and M. Davidson, “God’s number is 26 in the
quarter-turn metric,” (2014).

[2] R. E. Korf, “Finding optimal solutions to rubiks cube
using pattern databases,” (1997).

[3] D. Silver, J. Schrittwieser, et al., “Mastering the game of
go without human knowledge,” (2017).

[4] D. Silver, T. Hubert, J. Schrittwieser, et al., “Mastering

chess and shogi by self-play with a general reinforcement
learning algorithm,” (2017).

[5] S. McAleer, F. Agostinelli, et al., “Solving the rubik’s
cube with approximate policy iteration,” (2019).

[6] F. Agostinelli, S. McAleer, et al., “Solving the ru-
bik’s cube with deep reinforcement learning and search,”
(2019).



5

[7] R. S. Sutton and A. G. Barto, Reinforcement Learning:
An Introduction (MIT Press, Cambridge, MA, 2017).

[8] K. He, Z. Xiangyu, R. Shaoqing, and S. Jian, “Deep
residual learning for image recognition,” (2015).

[9] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal
basis for the heuristic determination of minimum cost
paths,” (1968).

[10] The procedure for evaluating the targets can be viewed
as one step TD-learning with greedy policy. However, in

standard TD-learning we would continue the path from
the resulting state until episode termination.

[11] One might argue that we can ignore this, since we do
not seek the optimal number of moves, but this weighing
also significantlly stabilizes the trainging and allows the
network to bootstrap faster. Without this step, the value
iteration would diverge [5].

https://webdocs.cs.ualberta.ca/~sutton/book/the-book-2nd.html
https://webdocs.cs.ualberta.ca/~sutton/book/the-book-2nd.html

	References

