
Playing and Experimenting on Atari Games with Deep Reinforcement Learning
(Dated: January 23, 2021)

In this paper we aim to examine the Atari games Gym environments and winning them using
Deep Q-Network (DQN) as a policy, as well as transferring knowledge to win new games faster. So
far, we have experimentally confirmed that, without change of hyperparameters, DQN agents are
successfully learning to win various games. However, our experiments with transfer learning show
that knowledge from previous games increases the training time for new ones.

I. INTRODUCTION

A. Related Work

OpenAI Gym’s environments are widely used for devel-
opment and testing of new reinforcement learning algo-
rithms. There have been numerous breakthroughs in the
field that have been demonstrated using Gym, one of the
most notable being DQN (Mnih et al.) [1]. It introduces
the first usage of a deep convolutional neural network
as a policy in a reinforcement learning problem and its
algorithm has later been adopted for various problems.

Recently, Deepmind’s Agent57 [2] managed to beat the
human benchmark on all Atari games. It is the first
model to generalize a solution for all games at the same
time.

Asawa et al. [3] have documented an approach to ap-
ply transfer learning methods and investigate whether a
trained DQN reduces the training speed of a new game
when compared to training from scratch. Their results
show that this is not the case. Even worse, using the
parameters of an already trained network decreases the
training time of the next agent. We aim to replicate their
results and improve them.

B. Problem Description

Teaching an agent to play by itself means that it needs
to learn how to react to environment changes, which hap-
pens over lots of iterations. In order to do that, most
approaches examine the visual data (observation) of the
environment and based on that they aim to make the best
conclusions as to what needs to happen next. Training
with visual input is also what we base our experiments
on.

In this context one observation in an Atari Environ-
ment consists of one frame of the game, or a 210x160x3
RGB image. A selected action is applied for a couple of
consecutive frames (often 4). In Mnih et al., a state is
defined to be a tuple (st, at, rt, st+1), where:

• st is the current observation;

• at is the action we have taken based on the obser-
vation according to our policy;

• rt is the reward we have received after taking this
action;

• st+1 is the next received observation.

These states are gathered throughout the training and
they represent the training data for the Q-network. It
is trained to predict the expected reward if a certain
action is taken. Hence, we define our loss function as
Loss(argmaxaQ(st, a), rt + γ ∗Q(st, at)) where Q is our
action-value function (or just Q-function) and γ is a dis-
count factor. Loss is MSE in the DQN paper; in our im-
plementation we use Huber loss. The DQN is described
in more details in Mnih et al. [1].

We wanted to find out if there is a way to achieve good
training results in less time. In order to achieve this we
used a transfer learning approach which is proven to re-
duce training times in other deep learning problems [4],
[5]. Our goal is to apply the transfer learning approach to
an already trained DQN agent for a different game and
then compare the training time of that agent with the
training times of another agent which had been trained
on the same game from scratch. We aim to apply trans-
fer learning across games that look similar in their logic.
With that, we expect the first agents’ networks to learn
higher level features that are applicable in the next games
as well. Two such pairs of games for transfer learning are
Breakout→ Pong, Pacman→ Asterix.

II. METHODS

In order to do our experiments, we went with a Deep Q-
Learning algorithm with experience replay. The way this
algorithm works is it uses a memory buffer to store past
transitions and a DQN which computes the necessary Q-



2

values. The algorithm steps are as follows:

Algorithm 1: DQN Algorithm

Initialize the memory buffer M to capacity
pretrain length;
Initialize DQN with random weights;
for iteration← 0 to N do
Obtain initial state st;
done← False;
while not done do
With a probability ε select random action at;
Otherwise at ←maxaQ(s, a);
Execute action at and observe reward rt, next
state st+1 and donet;
Store transition (st, at, rt, st+1);
done← donet;
st ← st+1;
Use batch from memory buffer to train DQN;

end

end

The architecture for the DQN we chose consists of 2
convolutional layers one layer that flattens the convo-
lution output, one fully connected layer and an output
layer. The input of the DQN is either a single state or
a batch of states, where the state is the aforementioned
tuple (st, at, rt, st+1). The observations st and st+ q in
the state consist of 4 stacked consecutive frames from the
environment.

During execution of the DQN algorithm, we keep two
copies of the Q-Network - policy and target. We use
target to predict the target expected reward when cal-
culating the loss function. The policy network is the one
that is being updated and every k iterations target and
policy are synced. k is a hyperparameter.

Using the algorithm and DQN architecture mentioned
above, we approached transfer learning the following way:

• We trained our agent on game X for N iterations

• Simultaneously we trained a second agent on game
Y for N iterations as well

• Once the first agent had finished training on game
X we started training it on game Y immediately,
using the already stored weights from the previous
training

We did not change the DQN architecture and we did
not reset any of the weights in the DQN for the transfer
learning. Because of this, the games on which we exper-
imented were chosen in such a way that they had the
same action space, so that the network could be applied
to both games. For the experiment we chose 2 pairs of
games with the same action spaces.

III. RESULTS

Due to limited time and resources, we could not afford
to do enough training to achieve competitive scores. We

FIG. 1: Trainings from scratch on Asterix and Pong. Both
agents improve their average reward over time.

trained long enough so that a steady and obvious increase
of average reward is observable.

We trained two agents to play respectively Asterix and
Pong from scratch (see Fig. 1). As noted in Mnih et
al., the DQN approach improves the agent’s performance
over time. We saved these agents’ performances to com-
pare them with the agents we produce after we apply
reinforcement learning.

Parallel to that, on different machines we trained
agents to play Pacman and Breakout and then train the
same agents on respectively Asterix and Pong. When
compared to the agents that we trained from scratch,
these achieved lower average reward for the same train-
ing time (see Fig. 2).

IV. CONCLUSION

In this paper we replicated the results from the orig-
inal DQN paper [1] and received satisfying results over
relatively short training times. On top of that, we tried
to accelerate the training of future agents by using al-
ready trained Q-Networks. Contrary to our expectations
and similar to the outcome of Asawa et al. [3], we did
not observe a decrease of training times. Even worse, the



3

FIG. 2: Agents trained on Pong and Asterix using transfer
learning for 1M iterations. The Q-Network was trained on re-
spectively Breakout and Pacman beforehand. Compare with
Fig. 1 to see that, at the same timestamps, the freshly trained
agents achieved higher rewards.

agents improved their average rewards slower than the
ones trained from scratch.

V. DISCUSSION AND FUTURE STEPS

We expected that the Q-Network would learn general-
ized and transferable features that could aid the training

of future agents. Our hypothesis why this did not happen
is that the architecture we used does not contain enough
trainable parameters to generalize and learn high level
features. Indeed, Badia et al. [2] use a much deeper neu-
ral architecture and also have implemented techniques
for ”guiding” the network into generalization. However,
in our case we aim to build a training transition between
only two games. For this goal, we believe increasing the
trainable parameters could improve our results. Thus it
is our first planned step in the future. Furthermore, other
transfer learning methods reinitialize the weights before
the output layer since they can be very specific to the
previous problem the Q-Network has been used to solve
[3].

VI. ACKNOWLEGEMENTS

The source code of the project is available on
GitHub: https://github.com/rl-game-training/
multi-game-agent.

Most of the development and training has been done
on Google Colab. We would like to acknowledge three
sources that aided us in implementing DQN:

• Dr. Marin Bukov’s implementation of DQN;

• DQN tutorial in Pytorch’s website: https:
//pytorch.org/tutorials/intermediate/
reinforcement_q_learning.html;

• David Reiman’s implementation of DQN:
https://github.com/davidreiman/
pytorch-atari-dqn.

We would also like to thank Viktor Velev (https://
github.com/VikVelev) for letting us train our models
on his GPU overnight.

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,
I. Antonoglou, D. Wierstra, and M. Riedmiller, “Play-
ing atari with deep reinforcement learning,” (2013),
arXiv:1312.5602 [cs.LG] .

[2] A. P. Badia, B. Piot, S. Kapturowski, P. Sprechmann,
A. Vitvitskyi, D. Guo, and C. Blundell, “Agent57:
Outperforming the atari human benchmark,” (2020),
arXiv:2003.13350 [cs.LG] .

[3] C. Asawa, C. Elamri, and D. Pan, “Using transfer learn-
ing between games to improve deep reinforcement learning

performance and stability,” .
[4] H.-W. Ng, V. D. Nguyen, V. Vonikakis, and S. Winkler,

in Proceedings of the 2015 ACM on International Con-
ference on Multimodal Interaction, ICMI ’15 (Association
for Computing Machinery, New York, NY, USA, 2015) p.
443–449.

[5] H. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues,
J. Yao, D. Mollura, and R. M. Summers, IEEE Transac-
tions on Medical Imaging 35, 1285 (2016).

https://github.com/rl-game-training/multi-game-agent
https://github.com/rl-game-training/multi-game-agent
https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html
https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html
https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html
https://github.com/davidreiman/pytorch-atari-dqn
https://github.com/davidreiman/pytorch-atari-dqn
https://github.com/VikVelev
https://github.com/VikVelev
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/2003.13350
http://dx.doi.org/10.1145/2818346.2830593
http://dx.doi.org/10.1145/2818346.2830593
http://dx.doi.org/ 10.1109/TMI.2016.2528162
http://dx.doi.org/ 10.1109/TMI.2016.2528162

	Introduction
	Related Work
	Problem Description

	Methods
	Results
	Conclusion
	Discussion and Future Steps
	Acknowlegements
	References

