
Navigation in swirling winds: Path optimization for gliders using
reinforcement learning

In this study a path planning algorithm for gliders and drones based on machine learning is
developed. The algorithm considers disturbance effects from low altitude winds. The movements of
gliders and drones are influenced by various physical disturbances in air environments, such as wind,
terrain and atmosphere composition. In the present study, the effects of local winds are the primary
consideration. A kinematic model is used to incorporate the nonholonomic motion characteristics
of a glider, and several reinforcement learning algorithms are compared for path optimization. The
proposed approaches determine a near-optimal path that connects the start and goal points with a
reasonable computational cost when the map and air current field data are provided. To verify the
optimality and validity of the proposed algorithms, a set of simulations were performed in simulated
and actual atmospheric conditions, and their results are presented.

I. INTRODUCTION

The motion of aeronautical vehicles is affected by many
external factors such as wind speed, wind direction, at-
mospheric drag, and air composition. Many of these fac-
tors are characterized by chaotic behaviour and evolu-
tion, which makes path planing a very non-trivial task.
For example, a low flying glider or drone, traveling from
Varna to Lovech must consider the strong Foehn winds
originating from Stara Planina if certain meteorological
conditions are satisfied. [1] When transporting medical
equipment or goods, drones and gliders must minimize
the travel time and reach their target as soon as possi-
ble. This optimization problem was first studied by E.
Zermelo in 1931. [2] In the cited paper, he studies the
problem in the form of a boat navigating on a body of wa-
ter, originating from a point A to a destination point B.
The boat is capable of a certain maximum speed, and the
goal is to derive the best possible control to reach B in
the least possible time. Zermelo derived a solution to the
general case in the form of a partial differential equation,
known as Zermelo’s equation. It is usually impossible to
find an exact solution in most cases, so numerical ap-
proaches are required.
Other search based techniques or dynamic programming
can be used to find optimal paths, but these suffer from
very large computational costs in systems with large state
dimension.[3] The computational complexity can be re-
duced by reducing the system’s state dimension, but this
often results in an inaccurate representation of the envi-
ronment and yields infeasable paths. This final project
compares several path planning algorithms based on rein-
forcement learning (RL) [3], which generate a physically
realizable path at a reasonable computational cost for a
glider navigating in a turbulent atmosphere.

II. METHODS

A. Path planning via reinforcement learning

The application of RL in complex environments is as
follows:

Figure 1: The goal of the agent is to go from a 3 by 3 regionA
to another 3 by 3 region B for the least amount of time.
The agent navigates in a 41 by 41 gridworld and can take 8
different actions shown in the panel on the lower right corner.
The velocity of the fluid is shown as a small black arrow inside
each state.

An agent represented by a parametrized policy π(a|s)
can, through sampling of an unknown environment, find
the optimal parameters for the policy that maximize the
total received per episode reward:

rtot =

∞∑
n=1

rn (1)

The agent takes an action from a discrete ensemble of ac-
tions.In this study, at each current state the actions are
always represented by the 8 different paths the agent can
decide to take as shown in Figure 1. The used environ-
ments are 2d gridworlds where each state is represented
by a location on the grid. A vector of the fluid velocity
is associated with each state. This vector is stationary in
the case of time independent flow and varies with time for
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the time-dependent flow. The fluid velocity at the point
that characterizes state s plus the agent’s chosen action
at that time determine the agent’s next state. The char-
acteristics of the environments are as follows: The grid
is of size 41 x 41, where each square represents a possi-
ble state, and the number of states (Ns) are 1681. Two
important parameters are introduced - Tmax and ∆t.
Tmax is the maximum amount of time steps the agent is
allowed to explore before terminating the process. This
is done to prevent the agent getting stuck in a certain re-
gion with no escape due to limitations in his own velocity,
to speed up computational time, and to make sure that
the sum (1) is always finite. This parameter is introduced
because in every studied case, the optimal solutions are
between Tmax/6 to about Tmax/2.5. Thus, limiting the
agent is not an issue.
The next important parameter is ∆t. It is used in the
time dependent case of the flow - it sets how many time
steps does the environment change for each action of the
agent. The environment changes together with the agent
moving, but it also changes sufficiently (∆t >> dt, where
dt is the infinitesimal change in time) before the agent has
the time to take an action again. This parameter is intro-
duced because realistically no vessel could make a move
as fast as the fluid is changing. For the solution simulated
using Navier-Stokes we allow the agent to make a move
after every 10 time steps of the fluid, meaning ∆t = 10,
and for the environment simulated using real data ∆t is
20 minutes.
In the simulations we introduce a normalized velocity
Vs, which is the median of the velocities of the fluid. The
value of 1 for Vs means exactly the median of the fluid
velocity and 0.5 means half of it. This will be the agent’s
own velocity. For the purposes of this research the au-
thors decided to use two RL approaches, which are com-
pared with each other with a goal to find the optimal for
navigation strategy in a turbulent flow.

B. RL approach based on an actor-critic algorithm

To identify a time-optimal trajectory a potential based
reward shaping is used at each time t during the learning
process, for both agents. [4]

r = −∆t+
|xB −Xt−∆t|

Vs
− |xB −Xt|

Vs
(2)

Here xB is the center of the final square the agent wants
to reach, Vs is the magnitude of the velocity of the agent,
Xt−∆t is the position of the agent at the previous step
and Xt is the current position. The first term in Eq. (3)
acts as a penalty if the agent takes to long to reach the
final target and as a stimulus to find a path that requires
the least actions. The second and third terms induce
improvement in the distance from the desired state, and
stimulate the agent to take paths that would over time
increase its proximity to the final state. This kind of re-
ward is known to preserve the optimal policy and help
the algorithm to converge faster [4]. The minus in front

of the third term means that if the agent got farther from
the target he is penalized, and rewarded if he got closer.
An episode can be finalized in three different ways: First
if the agent moves within 1 square of the desired state
the episode is terminated and the agent receives a reward
of r=100. Second if the agent hits the borders of the en-
vironment, then he does not change his current position
and receives a big penalty r=-100. And the third way is
as mentioned before if the agent takes too long and takes
more than Tmax actions the episode is terminate and the
agent receives the normal reward (3) for his final action.
In order to converge to policies that are robust against
small perturbations of the initial condition, which is im-
portant in a chaotic environment, each episode is started
with a uniformly random position around the initial
state, or more precisely there is an equal probability to
add a +1,-1 or a 0 to is initial x,y coordinates at the start
of each episode.
For this agent, the policy is parametrized by the soft max
distribution defined as:

π(aj |si; q) =
exp βh(si, aj ,q)∑Na

k=1 exp h(si, ak,q)
(3)

Here β is a temperature parameter with an associated
increase rate, which is used to lower the exploration at
later stages and help the policy converge to a determin-
istic one. And h(si, aj ,q) = qij and characterizes the
likelihood of taking action aj at state si. During the
training phase, the expected total future reward needs to
be estimated (1). This agent follows the one-step actor-
critic method [3] based on a gradient ascent in the policy
parametrization. The critic approach circumvents the
need to generate a big number of trial episodes by in-
troducing the estimation of the the state-value function
v̂(si, w):

v̂(si, w) =

Ns∑
i′=1

wi′yi′(si) (4)

Here y′i(si) = δii′ . v̂(st) is used to estimate the future
expected reward r̂′(t), in the gradient ascent algorithm:

r̂t+∆t = rt+∆t + v̂(st+∆t, w) (5)
r̂t+∆t is used to estimate βt (6), which is the future ex-
pected reward minus the state-value function, used as
baseline.

βt = [r̂t+∆t − v̂(st, wt)] (6)

And the update rule for parameterizations of the policy
and the state-value functions every time the environment
is sampled is as follows:

{
qt+∆t = qt + αtβt∇qln(π(at|st,qt))
wt+∆t = wt + α′tβt∇wv̂(st, wt)

(7)

Where the learning rates αt, α′t , follow the Adam algo-
rithm [5] to improve the convergence performance over
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standard stochastic gradient descent. Both gradients in
(15) can be computed manually and are reduced to the
following simplified expressions. All state action pairs for
the past state are updated. if the state action pair in-
cludes the action the agent decided to take the following
update is made:

q(st, ai)← q(st, ai) + αtβt(1−
Na∑
j=1

π(aj |st, q) (8)

In all other cases for the other 7 actions we do the fol-
lowing update:

q(st, ai)← q(st, ai)− αtβt
Na∑
j=1

π(aj |st, q) (9)

In both cases the w values are update in the following
way:

w(st)← w(st) + α′tβt (10)

C. Second agent based on Probabilistic
Q-learning(PQL)

Based on the work of [6, 7], an agent based on a
probabilistic Q-Learning method is introduced. For this
method, the same reward as in the previous agent is used,
because the same arguments are valid for its applicability.
Each episode is also started with a uniformly random po-
sition, again because the goal is to get to a solution that
does not depend on small perturbations in the initial con-
ditions.

The main characteristic of PQL is that we associate
to each state action pair to distinct values. A value for
the Q function [3] and a value of the policy, in this case
the policy P( just as the Q function) is a 41x41x8 matrix
where P (i, j,m) is the probability from 0 to 1, to take
action m at state s with coordinates on the 2d grid i, j.
The definition is equivalent to the following expression[8]:

aπs = fπ(s) =


a1 with probability pπ(s, a1)

a2 with probability pπ(s, a2)
...
am with probability pπ(s, am)

(11)

As can be seen we take action aj with probability p(s, aj).
Of course in order for P to have the meaning of proba-
bility we need to impose the following requirement:∑

A∈A(s)

p(s, a) = 1 (12)

The one-step updating rule of PQL forQ(s, a) is the same
as that of QL:
Q(st, at)← (1−at)Q(st, at)+at(rt+1+γ max a′Q(st+1, a

′)).
(13)

Where αt is the learning which Is a hyper parameter.
Andγ ∈ [0, 1) is a discount factor. Besides the updating
of Q(s, a), the policy is also updated for each action of

the agent. After the agent takes an action at st , the
corresponding probability p(st, at) is updated according
to the reward the agent received - rt+1 and the maximum
value of Q(st+1, a) for the state the agent ended up after
taking the action s′ = st+1

P (st, at)← P (st, at) + k(rt+1 + maxa′Q(st+1, a
′)) (14)

Where k (k ≥ 0) is an updating step size.The
probability distribution of actions at state s =
st[p(s, a1), p(s, a2), ..., p(s, am)] is normalized after each
update. One of the main advantages of PQL is its weak
dependence on hyper parameters [8]. This is due to the
fact that the variation of k in a relatively large range
will only slightly affect the learning process because the
probability distribution is normalized after each step.
The PQL algorithm can be summarized by the following
pseudo code:

1: Initialize Q(s, a) arbitralrly
2: Initialize the policy π : Pπ = (pπ(s, a)nxm to be evaluated
3: repeat (for each episode):
4: Initialize t = 1, st,
5: repeat for each step of episode
6: at ← action ai with probability p(st, ai) for st
7: Take action at, observe reward rt+1, and next state
st+1

8: Q(st, at)← Q(st, at) + atδ
Q
t+1

9: Where δQt+1 = rt+1 +γmaxa′Q(st+1, a
′)−Q(st, at)

10: P (st, at)← P (st, at) + k(rt+1 +maxa′Q(st+1, a
′))

11: Normalize P (st, ai)|i=1,2,...,m

12: until st+1 is terminal
13: until the learning process ends

Another reason why PQL is a good approach in a
chaotic environment is that there is no need to intro-
duce a superficial hyper parameter that would regulate
the exploration at different times ( β in the actor critic
approach). In such a way if a change occurs in the en-
vironment at later times the algorithm would naturally
start to once again explore by updating the policy, and
its exploration won’t be reduced by external mechanisms.
On the other hand as will be shown in Section III when
a quasi-optimal solution is found, the policy rapidly con-
verges to an almost deterministic one.

D. Simulation of a viscous fluid using the
Navier-Stokes equation

The Zermelo problem in this study is applied in two
environments. The first one is a viscous fluid simulated
by solving the Navier-Stokes equation:

∂~v

∂t
+ (~v · ∇)~v = −1

ρ
∇p+ ν∇2~v + f (15)

Where ν = µ
ρ0

is called the kinematic viscosity. v is the
velocity of the fluid p is the pressure of the fluid. ρ is
its density and f is a source of the the fluid. In our
case we solve the equation with varying time dependent
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boundary conditions which are specified in the software
repository of [9] The two sources added also vary in time,
but have e specific location. The equation is solved using
finite difference method, the main theoretical reasoning
behind such a solution can be found in [10], where the sta-
bility and error are discussed in detail. The parameters
required to solve the equation dx, dy, dt (the discretiza-
tion of both time and space) are taken from [9]. A part
of the code provided in the cited paper is reused for our
needs.

III. TESTS AND COMPARISONS

This section is broken in to three main subsections.
Comparison with the trivial policy, comparison with the
optimal solution where an applicable numerical method
for its derivation exists, and comparisons of the two agent
with each other where the other two methods do not yield
solutions.

A. Trivial policy

The trivial policy is a policy where the agent always
takes the action that points in the direction of the de-
sired target location. Because of the discretization this
direction is rarely available to the agent and that’s why
he takes the action that is closest to his desired direction.
The trivial policy outperforms our agents in certain very
simple environments as shown in Figure 2 due to the
exploring nature of the agents, but performs extremely
poorly in dynamic situations precisely due to the lack of
exploration.

B. Comparison with analytical solutions

Due to limitations in our computational power we were
not able to apply zermelo’s solution. The problem arose
when calibrating the initial conditions of the differential
equations one is required to solve . The authors of [11]
explore in debt the reason behind the instability and un-
reliability of zermelo’s solution when one is required to
identify an initial steering angle. That is why we per-
formed only a single comparison with an analytical solu-
tion provided by the following differential equation [12]:

y′(x) =
c0vv√

1− c20(v2
v − v2

f )
(16)

Here c0 is a constant which determines the boundary con-
dition, vv is the velocity of the agent, vf is the fluid veloc-
ity. Results from this comparison are shown in Figure 2.

Figure 2: Right column contains the trajectory taken by the
actor-critic agent, blue dashed line is the analytical solution.
Left column contains the trajectory of the PQL agent. The
bottom graphs represent the density of visited states along
the training process. The red line corresponds to the path
taken by the trivial policy agent.

Figure 3: On the left are shown the trajectories of the PQL
agent with 3 different speeds. On the right is the actor-critic
agent.

C. Behaviour in the simulated fluid

The above results show the quasi-optimal paths that
both agents were able to converge to for different speeds
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Figure 4: Right graph is the learning curve of the PQL agent,
the left is the learning curve of the actor-critic agent.

Figure 5: Density of visited states in the time dependant
version of the simulated flow. On the left are the trajectories
of the PQL agent and on the right are the actor-critic agent
trajectories.

Vs. The missing paths on Figure 3 are due to the agent
not being able to consistently reach the desired loca-
tion. From the data we can conclude that the PQL agent
strongly outperforms the actor critic one, first by consis-
tently finding a solution to the problem with all speeds
it was tested for and secondly due to its learning rate.
From Figure 3 which shows the evolution of the reward
for both agents in the case of Vs = 0.9 in the upper start
and final configuration, one can see how the PQL agent
ramps up the reward much faster and once the quasi op-
timal path is reached consistently follows it. Tests on
the time dependent version of this environment show the
same perfomance for both agents, and the actor-critic
model yields slightly better results.

PQL was applied to path planning in a real-world en-
vironment using actual wind speed data to examine the
effectiveness and practical utility of the approach. Actual
wind data were taken from 35 meteo-stations across Bul-
garia. Data were acquired from a free online weather data
provider. [13]. The data downloaded consists of 12 con-
sequent measurements of the wind speed and direction
for each station. Then the data is interpolated in time to
a total of 124 values for each component of the velocity
vector of the wind. To make this data compatible with
the RL framework of this work, the geographical coordi-
nates of the weather stations were linearly transformed
to coordinates on a 41 by 41 grid. This transformation
ignores the curvature of Earth, but due to the small size
of the region, and its position on the globe, this is an ac-
ceptable approximation. Thus, the final generated data

Figure 6: This figure shows different trajectories taken by the
QPL agent through its learning process in the time indepen-
dent case. The starting point of the agent is Rousse, and the
end point is Burgas. The green lines are trajectories of the
agent during episodes 50-100, the yellow lines are episodes
400-600, and the red line is the final path taken at episode
2500.

consists of 124 different 41 by 41 grids representing time
steps, where each state is associated with a vector repre-
senting the wind.
To test the performance of the agent in this environment,
only one snapshot in time was first used. Results are
shown in Figure 6. In the first 200 episodes the agent
is going out of the boundaries, because of the wind and
is punished. By episode 400 the agent has learned not
to go out of the boundaries and steer towards the goal
point. At episode 1000 the agent has learned the trajec-
tory which yealds the biggest reward.

For the time dependent case of this environment an
animation of the flow was made and can be found in
the supplementary material. A comparison between the
Trivial policy (green line) and the PQL agent (red line)
for Vs = 0.5 is made. On this clip, the trivial policy
fails to get to the goal point, and the PQL agent finds a
pseudo-optimal path.

IV. CONCLUSIONS

In conclusion our project was able to reproduce the
main results in [11] and expand on them with the addi-
tion of a second agent. The PQL agent outperformed the
actor-critic algorithm in certain scenarios most notably
in complicated time independent environments, and in
the time dependent case for the environment simulated
with real data. But the actor critic agent did better in
the more simple environments and in the time depen-
dent Navier-Stokes equation for at least one configura-
tion, that’s why we can’t claim with certainty that one
agent is clearly better than the other one. But nonethe-
less we showed that further work must be done in this
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field to find an optimally suited RL approach to tackle
Zermelo’s problem, because it is clear that the methods
presented in [11] can be outperformed.

We were also able to apply the agent on a “real” envi-
ronment and show its applicability in real world problems
which the authors of the original paper did not attempt
to do. As it was mentioned in the beginning the solving
of Zermelo’s problem has significant implications espe-
cially in optimal control theory. Techniques developed to
solve this problem may be applicable not only to gliders
but also to optimizing air traffic for airplanes [14] and
sea navigation for long and short distance marine routes
[15].

Further work on this project must ensure that more re-
sults are compared with existing numerical solutions and
more complicated RL algorithms are applied to the prob-
lem. The authors expect to see Deep RL being applied
in this sphere in the future because to the best of the
authors knowledge no such algorithms have been applied

to the problem.
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