
Indian Crossroads Traffic Warden

Student A1, 2 and Student B3

1Department of Mathematics and Informatics, St. Kliment Ohridski
University of Sofia, 5 James Bourchier Blvd, 1164, Sofia, Bulgaria

2Ablera
3Department of Physics, St. Kliment Ohridski University of Sofia, 5 James Bourchier Blvd, 1164, Sofia, Bulgaria

(Dated: January 23, 2021)

Abstract: Traffic congestions contribute by a large part to people’s loss of time and money
in unforeseen situations. The main problem occurs when drivers are stationary at an unregulated
crossroads, and do not take the optimal actions. Sometimes drivers are not concentrated enough and
hence they do not fully optimize their actions in a given situation. Often at crossroads the preceding
vehicle needs to exit the crossroads, in order for another one to enter. We propose a solution to this
problem. We train a deep reinforcement learning agent, using an Advantage Actor Critic algorithm,
which constantly controls the vehicle and the curvature of each vehicle in the crossroads, until a
car leaves successfully the crossroads. Our ablation study shows promising results. The solution
could be introduced to self-driving vehicles, and after further development could limit the needs
of traffic signals. Our contribution in this paper is two fold. Firstly, we created an open-source
environment which can be used for testing and development of reinforcement learning algorithms.
We also created a solution for a problem, which to our knowledge, has not been created yet.

Problem Statement: Traffic congestion is becoming
an increasingly more impactful problem in our every day
lives. A lot of statistics and researches are published an-
nually, which aim to point our attention to this problem
and the consequences it brings. Statistics show that the
average number of hours per year a U.S. driver spends
in traffic is 41. This numbers is a lot bigger in some
of the more congested states, like Los Angeles, where
residents spend an average of 102 hours annually in traf-
fic. Some solutions to this problem involves traffic lights,
restrictions to traffic in peak hours, higher fees for ve-
hicles, public transport, shared commute to work, and
others. There are two main factors that greatly influence
the outcome of a given traffic crossroads event. A traffic
crossroads event in this paper is defined as the time spent
in the crossroads by all cars.

The first factor, which influences the outcome of this
event is the delay that occurs between each driver’s per-
sonal evaluation of the event and the action the driver
takes. The second factor is the accuracy of each driver’s
estimate of the situation. In this paper we propose an
innovative solution to the problem, which consists of an
intelligent system that learns to control the speed and
the rotation of each car. This is the exact problem that
we tackle using reinforcement learning. The objective of
this research is to minimize the time spent on a cross-
road, in a manner that is safe for all the participants in
the traffic.

In the past, researchers have created various reinforce-
ment learning agents that aim to control traffic in some
sense, whether it be through solving conflicting traffic sig-
nals via phase competition [1], managing traffic light sig-
nals based on the amount of traffic [2] or through manag-
ing the whole traffic system at once [3]. Although all the
above-mentioned methods are successful, we would like
to focus our research on a topic which, to our knowledge,
has not yet been tested. Our goal is to create a reinforce-

ment learning algorithm, which will act as a traffic war-
den at an unregulated traffic crossroads. In our project,
we focus our attention on crossroads with no traffic lights.
Furthermore, we would like to maximize the number of
vehicles that pass through the crossroad, while keeping
the least number of stationary vehicles possible. For ref-
erence, check the following video of a crossroad in India
[4].

Some non-trivial questions that we answer are:

• Can the full area of the traffic crossroads be used,
but in a more controlled way than in the video, hence
achieving better performance - less time spent on the
crossroad by each car?

• Can the problem be solved if each vehicle has only
one point in space, which satisfies the condition of an
exit?

• Can all vehicles move at the same time, without wait-
ing for each other to evaluate the different actions? In-
stead of using multi-agent reinforcement learning setups,
we propose the usage of a single agent, which controls all
vehicles in the environment, while modifying each car’s
velocity and curvature.

Reinforcement learning is a suitable approach to this
problem, because it gives the possibility to explore and
evaluate different scenarios. The problem can be ap-
proached in two ways: model free algorithms and model-
based algorithms [5], [6]. The latter use a predictive
model which learns the outcomes of taking certain ac-
tions. In contrast, the model free methods do not use a
predictive model, instead they learn a control policy di-
rectly. Model-based methods are guided by a predictive
model, while model free methods learn the environment
dynamics through exploration of the possible actions. Al-
though recent approaches have combined model-based
and model free approaches [7], our team decided to cre-
ate a model free model. In this task, the agent needs to
explore different scenarios and estimate the q-values at



2

FIG. 1: All four cars start at the four entrances of a four-
ways intersection. Each of the cars gets assigned, at random,
a target exit, which is one of the other 3 exits.

FIG. 2: All four cars move simultaneously inside the cross-
roads.

FIG. 3: The goal of the agent is to learn to drive each car
to its respective target exit.

each step. The q-values in this setting show how good a
pair of actions - velocity, curvature - are for a certain car
in a certain state, looking at all other cars.

Environment Design: We created our environment.
Our environment is a bounded 10 x 10 square box, with
4 exits at the exact centers of the sides of the square.
Four cars are spawned at the four exits (one at each exit)
and each of the four cars is assigned a target exit at
random - one of the other three exits. The intuition
behind this is that each car has an exact exit that it needs
to reach in order for the task to be considered successful.
Each car is represented by its x and y coordinates, so

the state space is a 4 x 2 matrix where each row is the
pair of coordinates of a car. A car can only exit from
the target exit. Each car is represented by a circle with
a center. The cars cannot leave the specified area of
the crossroads, unless they reach their respective target
exits. A car crash is defined using the Euclidean distance
between two points. The ”unsafe distance” is a hyper
parameter in the environment. If the center points of
two cars are located at a distance lower than the ”unsafe
distance” hyper parameter, a car crash occurs. For any
non-moving car, the agent receives a negative reward. At
each step of the environment, all of the above-mentioned
conditions are checked and the total reward is calculated.
The velocity is calculated as follows:

V2 = V1 + a/10

We divide the acceleration by a factor of 10, because
we would like to make smaller steps in the environment,
which would result in a more continuous movement of
the cars in the environment.

Supplementary Rewards:

• time reward - a positive reward for each car which is
not static

• static reward - a negative reward for each car which
receives a velocity of 0

• crash reward - a negative reward for each crash be-
tween two cars

• success reward - a positive reward for each car which
successfully exits through the target exit

• close-to-success reward - a positive reward for each
car which is located in a close proximity to its target exit

• boundary reward - a negative reward for each car
which tries to leave the boundaries of the environment.

The total reward is the summation of all supplemen-
tary rewards. In order to move a car from point A in the
crossroads to a point B, using its velocity and rotation,
we use the following formula:

x2 = x1 + d ∗ cos(ad ∗ π/180)
y2 = y1 + d ∗ sin(ad ∗ π/180)

where x1 and y1 are the initial coordinates of a car, d
is the velocity of the car, and ad is the angle in degrees
of a car’s rotation.

Methodology: The purpose of our agent is to learn
to move each car towards its target exit. Our agent ob-
serves the state space and modifies only the acceleration
and the rotation of each car. We have constructed the
problem in an episodic scenario. The complexity of the
task consists of the continuous nature of the action space
and the state space. A suitable approach to the problem
are the policy gradient methods, which try to directly
optimize the policy. These methods are more suitable
than value based methods, because in a continuous ac-
tion space the value based methods cannot explore all
possible actions, because there are infinitely many such
actions. The policy gradient method also has a signifi-
cant drawback. This method simulates taking actions in



3

an environment, in order to calculate the final reward of
the episode. Once the algorithm compares the rewards
of the different episodes, it chooses the actions that max-
imize the reward.

However, the significant drawback is hidden in the
Monte Carlo simulation itself. The policy gradient
method does not have a way to avoid taking bad ac-
tions. It takes the actions that maximize the reward in
an episode. This may be harmful, as certain bad actions
could be taken, no matter that they are bad, as long as
they maximize the reward. One possible solution to this
problem is the Actor Critic methods. This family of al-
gorithms makes updates the policy at each step. Recall
that the Reinforce algorithm waits for the whole episode
to end, and then computes the total reward. The main
drawback of the REINFORCE algorithm, defined as:

∇θJ(θ) ∼
∑T−1
t=0 ∇θlogπθ(at|st)(Gt) (1)

where the total reward is Gt

The two main problems which may occur with the RE-
INFORCE algorithm, are that the sum of the rewards
in a trajectory may sum up to 0, effectively zeroing the
gradients, and that the gradients have a high variance.
One way to overcome these problems is to substract a
baseline from the cumulative reward. However, a better
solution is to introduce a value function which estimates
the cumulative reward, instead of waiting for an episode
to finish to calculate it. These are the Actor Critic meth-
ods.

There are many variations of the Actor Critic methods.
We decided to implement an Advantage Actor Critic al-
gorithm (A2C). The A2C algorithm is a type of a policy
gradient algorithm. An Actor Critic algorithm consists
of two parts:

• critic - estimates the average value of a state
• actor - updates the policy in the direction suggested

by the critic
Different Actor Critic algorithms use different value

functions (Q-value, Advantage, Temporal Difference).
The Advantage function is defined as the difference be-
tween the Q-value at a certain state for a certain action
and the value of that state.

A(st, at) = Qw(st, at)− Vv(st) (2)

where the Q-value is defined using the Bellman equa-
tion as:

Q(st, at) = E[rt+1 + γV (st+1)] (3)

The action-value function (Q-value) is the expected re-
turn of a certain action in a given state. It is the ex-
pectation of the return of the next state, having taken
a certain action, summed with the discounted value of
the next state. The action-value function emphasizes the
importance of taking a specific action in a given state.

This allows us to rewrite the equation for the Advantage
function as follows:

A(st, at) = rt+1 + γV (st+1)− Vv(st) (4)

The update equation for the Advantage Actor Critic
algorithm, parameterized by v is given by:

∇θJ(θ) ∼
T−1∑
t=0

∇θlogπθ(at|st)(rt+1 + γVv(st+1)− Vv(st))

=
∑T−1
t=0 ∇θlogπθ(at|st)A(st, at) (5)

The intuition behind the Advantage function is that
it provides a measure of how much better it is to take a
specific action in a state, in comparison to the average
value for this state. From equation (1) we can clearly
see that the actions that are better on average in a given
state would result in a positive advantage and vice versa.

Because in our environment the action space is defined
as a 4 x 2 matrix, where each row represents the pair
of acceleration and rotation for each car, we construct 3
neural networks to estimate four parameters, given the 4
x 2 matrix which represents the state space. Recall that
the state space presents the coordinates of each car (x,
y). The parameters that are approximated using neural
networks are:

• value - the average value of a given state (a real
number)

• alpha - alpha parameter of a beta distribution (a
positive number)

• beta - beta parameter of a beta distribution (a posi-
tive number)

• sign - the sign of the acceleration (a 1d array with
probability distribution) - we would like to model the
cars accelerate and decelerate when needed

In our problem formulation, we define the acceleration
as the negative of a sample from a Beta distribution,
constructed using the alpha and beta parameters from
the neural network, iff argmax(sign) = 1.
Results: The trained system is able to maximize the

rewards from the environment, and to successfully drive
a car towards its target exit. Our experiments show the
systems is very unstable, as it heavily relies on the ratios
between the different rewards. We trained the system
for 2 500 episodes, where each episode consists of 10 000
steps. We explicitly chose such long training procedure,
because the positive rewards in the system are sparse,
and the agent needs a substantially large explored space
of state-actions. Reaching a single target point of exit
turns out to be impossible by our algorithm. The prob-
lem is solvable if the target exit is presented as a collec-
tion of states between two points. It is possible to solve
the problem while all vehicles are moving, and last, but
not least, we make sure our algorithm optimizes a sig-
nificantly larger portion of the area, compared to what
human drivers would.



4

Implementation Details: We construct 3 neural
networks. The first NN consists of 2 Linear layers with
a Relu activation between them. Each layer has 200 hid-
den neurons. The second NN consists of 2 Linear layers
with a Relu activation, and a Softmax activation for the
latter. The softmax layer outputs the probability distri-
bution for the sign of the acceleration. The third NN
consists of 2 shared Linear layers with a Relu activation
between them and 2 heads. Both heads consist of a single
Linear layer, which outputs the alpha and the beta pa-
rameters respectively, which are used to model the beta
distribution. We clamp the outputs for the NN which
estimates the alpha and beta parameters to a range be-
tween 1.5 and 2.5, because we found this works good in
practise. We use Adam optimizer with an initial learning
rate of 0.0005 which decreases by a factor of 10 every 30
episodes. Furthermore, we connect the agent to Unity.
Let’s start by explaining what we are aiming to do with
Unity. Our goal with this project is to simulate the move-
ments done by the agent in a more animated way, which
is easier to understand visually. In order for us to do that,
first we need to build the environment, i.e the crossroad
and the cars themselves. Let’s start with the car, there
are several ways we could make the car move in Unity,
for example we could give the object speed and direction,
or a point towards which it moves, we could give it only
acceleration at certain intervals and make it move like
that. For our purposes we will need to make it in such
a way, that for each step our agent makes, we can repro-
duce that step in the game itself. To that end we tell the
car to move with speed and rotation, i.e it moves towards
a certain angle. Because want to simulate 2D movement,

we exert a force, with the z value being a constant, and
the x and y are the cos and sin of the angle accordingly.
This is done by applying a vector to the car, that fol-
lows a formula, almost identical to the one used by the
agent itself . And now we have a moving car, that will
move accordingly to the agent. The next step is to read
the starting positions, exit positions, speed and rotation
from the agent. We will use a text file, divide it in lines,
and the lines themselves will be further divided into the
4 values that each car needs. The last step we have to do
is match up the time of each step the car makes in Unity,
with the time of each step in our agent. To achieve that
we just limit the amount of updates the car gets from the
agent per second. That’s it, we’ve got a system where the
car will move in whichever direction the agent tells it to,
whenever it tells it to, so that in the future when we ex-
pand this project for more complex crossroads, we need
only to train the agents. [8].
Future Work: The problem could be extended in

different directions: different environments, different re-
inforcement learning paradigms. Currently, the authors
of the paper are currently working on a model-based so-
lution in order to compare it with the current results pro-
duced by the A2C algorithm. Another addition is to the
project could be an integration with convolutional neural
network models, which would take as input images from
a camera located above the crossroads.
Acknowlegements.— We thank Professor Marin Bukov

for teaching the course of Deep Reinforcement Learning.
The authors are pleased to acknowledge that the compu-
tational work reported on in this paper was performed
on an NVIDIA Tesla V100 32GB.

[1] Zheng, Guanjie, et al. Learning Phase Compe-
tition for Traffic Signal Control. 12 May 2019,
arxiv.org/abs/1905.04722v1.

[2] IntelliLight: A Reinforcement Learning Approach
for ... faculty.ist.psu.edu/jessieli/Publications/2018-KDD-
IntelliLight.pdf.

[3] hzw77, and hzw77. Hua Wei, 15 Sept. 2019,
sites.psu.edu/huawei/2019/09/15/colight-cikm-2019/

[4] Indian Crossroads video,
https://www.youtube.com/watch?v=7aSkJCUDAes

[5] Hui, Jonathan. “RL - Model-Based Reinforcement
Learning.” Medium, Medium, 2 Nov. 2019, jonathan-

hui.medium.com/rl-model-based-reinforcement-learning-
3c2b6f0aa323

[6] I. (2018, October 29). What is Model-Based Re-
inforcement Learning? - the integrate.ai blog.
Medium. https://medium.com/the-official-integrate-ai-
blog/understanding-reinforcement-learning-93d4e34e5698

[7] Feinberg, V. (2018, February 28). Model-Based Value Es-
timation for Efficient Model-Free Reinforcement Learning.
ArXiv.Org. https://arxiv.org/abs/1803.00101

[8] Our official implementation can be found at
https://github.com/MihailMihaylov97/indiancrossroads


	References

