
 

Gaussian Mixture Models

Gaussian distribution in Id
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Xi need coupling between Kira
no longer have

Xs productof N x N
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Gaussian distro have a single lunique
maximum at x p
sometimes called unimodal
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Gaussian mixture models
want a distr that can describe
multiple maxima e.g µmultimodal distribution
back to Id

idea shift different Gaussian disks
add them up

µ

N Klm MY

Nahin
AN

Nullxly o

Nhl In dik D II Name dit
4

impose normalization condition

ffdxvlxlhiil.MY IZLlilx1 it
Li KEIN

i



Det Gaussian mixture model in Id
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Applications of Gaussian mixtures

1 clustering e.g K mean density estimation

2 as a variational ausatz for a

more complex prob distr
approximate with Gaussian mixture

learn variational parameters
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Markov Processes

det a stochastic or random process which
satisfies the Markov property

Markov property 1 Markovianity
predictions regardingfuture outcomes
depend only on current state and

Not on the process history
memorylessness
can make future predictions without
knowing the history

torey let Xe Xz be random variable

Xi X z satisfy the Markov property if
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governs the dynamics of Markov chain

today is rainy
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what is the probability to have
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day in one week
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stationary distribution
Lota Markov chain
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EingModest
spin configurations Istates
binary variable Sj e Lt I
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applications ot Ising motels
unsupervised learning
energy based models

Restricted
Boltzmann
machines RBMD

variational Autoencoders
UAEs

bar code linense code

magnets electron spin etc
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closed 1periodic lattices I t fc t 2
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2d lattice with periodic boundary conditions

def Ising model a function energy
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single body HCS is linear in S
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two body 1interacting
Hts Tig Si Sj Ihj Sj
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measure correlations
between spins

multi body
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ground state configuration Sas
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Sas minimizes the energy
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Is a system can be in
any config
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which configuration is more likely
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Hls energy function

2 partition function 1 um normalization
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all possible
configurations s N lattice sites

2N configurations
exponentially many

role of temperature T D Ht
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system can be in
any

sleek S

with equal probability
p s I
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3 intermediate temperature O pox
there is a finite prob for the
system to occupy any state

which states are more likely
how can we find likely to occur
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Montecarlo Methods

broad def a class of computational
hat rely on repealed random

sampling
widely used in
optimization RL

generating samples from a prob distr
numerical high dimensional integration

lo Mcmc

idea design a Markov chain whose
station ang

distr it is the

target distribution p which we want
to sample

obtain a sample from p by recordingthe stakes in the Markov chain
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1 existenuate sufficient Cuot necessary
condition is detailed balance
for every pair x x the transition x

is reversible
in other words the prob of being in

transitioning to
x is equal to the

prob of being in x f transitioning to x
x X

p x4x iTx P xlx4T4
transition being in x

x x

2 uniqueness of it is guaranteed if

every state is

a aperiodic system does not return to
same state at fixed time
intervals

b positiverecurrent system will revisit
the state in finite
number of steps
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MetropowsHastingLalgorite
i want to sample from DCx
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Algorithm
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idea separate transition x x in two steps

e proposal step let gex'D define the

conditional prob of proposing state

given state x



2 acceptance 1rejection step
let A Lx id be the acceptance distr
to accept the proposed state

transition prob pLx Ix gLx Ix AIN x

plugging into
detailed balance
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view as def of A
choose acceptance nation Alx xD
which satisfies this condition
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either Atx xD or A xlix

pseudo coder generates samples asMarkov chain

1 Initialize
a pick any

initial state x

b set t O








