Gaussian Mixture Models - Gaussian distribution in (d  $N(x|\mu, 0^2) = \frac{1}{\sigma \sqrt{2}} e^{-\frac{(x-\mu)}{2\sigma^2}}$  $\mathcal{N}(x \mid \mu_1 \sigma^2)$ IR N (x/ Mc02) standard deviation variance x mean  $\rightarrow$  normalized:  $\int dx N(x) \mu(\sigma^2) = 1$ N(x) > 0 Hx => probability distr. -> multivaviate Gaussian distribution x<sup>2</sup> G R<sup>d</sup>  $\begin{array}{c} x_{2} = U \\ \uparrow \mathcal{N}(x_{1}, x_{2} = 0) \end{array}$ e-g. d=2 one possibility: NIX/ Ma, M2; 02, 03) = N/X, /Ma, Oa) N/X2/42,0) what if distr. is filted / squeezed?



det: covariance matrix : Z & R^dxd positive définite



· sometimes called unimodal

- Gaussian mixture models  
want a distr. that can describe  
multiple maxima reg.  
'multimodal distribution"  
-> back to 1d  
idea: shift different Gaussian distrs.  
R add them up  

$$N^{(1)}(x | \mu^{(1)}, \sigma^{(1)}) =$$
  
 $N^{(2)}(x | \mu^{(3)}, \sigma^{(1)}) =$   
 $N^{(2)}(x | \mu^{(2)}, \sigma^{(2)}) =$   
 $N^{(2)}(x$ 

Def (Gaussian mixture model) in 1d  

$$N(x | i | \mu^{(j)}, \sigma^{(j)^2} j_{j=1}^{\kappa}) = \sum_{i=1}^{\kappa} d^{(i)} N(x | \mu^{(i)}, \sigma^{(j)^2})$$
  
 $\Rightarrow if data  $\vec{x} \in \mathbb{R}^d$ ,  $d > 1$   
 $N(\vec{x} | i | \mu^{(i)}, \sum^{(i)} j_{i=1}^{\kappa}) = \sum_{i=1}^{\kappa} d^{(i)} N(\vec{x} | \mu^{(i)}, \sum^{(i)})$   
where  $\mu^{(i)} \in \mathbb{R}^d$   $\mathcal{R} = \sum_{i=1}^{(i)} e^{(i)} e^{(i)} d^{(i)}$   $pos. def.$   
 $f = 1$   
 $- Applications of Gaussian mixtures$   
 $i) clustering : e.g. K-mean, density estimation$   
 $2) as a variational ausatz for a
more complex prob. distr.
 $\Rightarrow approximate with Gaussian mixture
 $learn variational parameters:$   
 $\mu^{(i)}, \Xi^{(i)}, Z^{(i)}$$$$ 

Markov Processes  
-def: a stochastic (or random) process which  
satisfies the Markov property:  
> Markov property / "Markovianity"  
· predictions regarding intere intromes  
depend only on current state and  
NOT on the process history  
· "memoryless ness"  
· can make future predictions without  
knowing the history  
> formally: let X1, X2,..., be random variables  
X1, X2,... satisfy the Markov property, it  

$$P(X_{nH} = x | X_n = X_n, X_2 = X_2, ..., X_n = X_n) = P(X_{nH} = X | X_n = X_n, X_2 = X_2, ..., X_n = X_n) = P(X_{nH} = X | X_n = X_n, X_2 = X_2, ..., X_n = X_n) = P(X_{nH} = X | X_n = X_n, X_2 = X_2, ..., X_n = X_n) = P(X_{nH} = X | X_n = X_n, X_2 = X_2, ..., X_n = X_n) = P(X_{nH} = X | X_n = X_n, X_2 = X_2, ..., X_n = X_n) = P(X_{nH} = X | X_n = X_n, X_2 = X_2, ..., X_n = X_n) = P(X_{nH} = X | X_n = X_n, X_2 = X_2, ..., X_n = X_n) = P(X_{nH} = X | X_n = X_n, X_2 = X_2, ..., X_n = X_n) = P(X_{nH} = X | X_n = X_n, X_2 = X_2, ..., X_n = X_n) = P(X_{nH} = X | X_n = X_n, X_2 = X_2, ..., X_n = X_n) = P(X_{nH} = X | X_n = X_n, X_2 = X_2, ..., X_n = X_n) = P(X_{nH} = X | X_n = X_n, X_2 = X_2, ..., X_n = X_n) = P(X_{nH} = X | X_n = X_n, X_2 = X_2, ..., X_n = X_n) = P(X_{nH} = X | X_n = X_n, X_2 = X_2, ..., X_n = X_n) = P(X_{nH} = X | X_n = X_n, X_2 = X_2, ..., X_n = X_n) = P(X_{nH} = X | X_n = X_n, X_2 = X_2, ..., X_n = X_n) = P(X_{nH} = X | X_n = X_n, X_n = X_n, X_n = X_n, X_n = X_n)$$

· · · · ·

 $P(X_{1}=S|X_{0}=S) = 0.8$  $P(X_{A}=R|X_{o}=S)=0.2$  $P(X_1 = R | X_0 = R) = 0.5$  $P(X, -S | X_0 = R) = 0.5$ - stransition matrix :  $P = \begin{pmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{pmatrix} R$ -> governs the dynamics of Markov chain e-g. today is vainy => Xo = R what is the probability to have a vainy day in one week?  $\vec{X}_{o} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \iff R \quad \text{foday} \qquad \overrightarrow{T} \text{ times} \\ \rightarrow \text{ distr. ofter } \vec{T} \text{ days} : \qquad \vec{P}^{\vec{T}} = \vec{P} \cdot \vec{P} \cdot \dots \cdot \vec{P} \\ \vec{X}_{\vec{T}} = \vec{X}_{o}^{\vec{T}} \vec{P}^{\vec{T}} = (0, 1) \begin{pmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{pmatrix}^{\vec{T}} \approx \begin{pmatrix} 0.7/4 \\ 0.28 & 59 \end{pmatrix}$ eg. today is survey:  $\vec{X}_{o} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$  $\vec{x}_{z}^{2} = (1,0) P^{T} \approx \begin{pmatrix} 0.7/43 \\ 0.2857 \end{pmatrix}$ almost the same ontrome invespective of initial condition

•

- stationary distribution: (at a Markov chain)  

$$\overline{\pi}^{+} = \overline{\pi}^{-}$$
fix point distribution  

$$\overline{r}^{+} = \overline{\pi}^{-}$$
fix point distribution  

$$\overline{r}^{-} = \overline{\pi}^{-}$$

$$\overline{\pi}^{-} = \left(\frac{\pi_{1}}{\pi_{2}}\right)$$

$$\left(\overline{\pi}_{1}, \overline{\pi}_{2}\right) \left[ \left(\frac{0.8}{0.5}, \frac{0.2}{0.5}\right) - \left(\frac{4}{0}, \frac{0}{0}\right) \right]^{-} = D$$

$$\left(\overline{\pi}_{1}, \overline{\pi}_{2}\right) \left( \frac{-0.2}{0.5}, \frac{0.2}{0.5} \right) = D$$

$$2 - 0.2 \overline{u}_{1} + 0.5 \overline{\pi}_{2} = D$$

$$- \sum \overline{\pi}_{2}^{-} = 0.4 \overline{\pi}_{1}^{-} = \sum \overline{\pi}^{-} = \left(\frac{5/7}{2/7}\right)^{-}$$
normalization:  $\overline{\pi}_{1} + \overline{\pi}_{2} = 1$ 

$$\frac{1}{2} = \sum \overline{\pi}^{-} = \left(\frac{5/7}{2/7}\right)^{-}$$

$$\frac{def}{def}: \begin{bmatrix} \lim_{n \to \infty} \overline{\chi}^{+} P^{n} = \overline{\pi}^{-} \\ \frac{\pi}{2} = \frac{1}{2} = \frac{1$$

closed /periodic lattice: 
$$\sum_{L} \frac{f}{2} \frac{L}{2} \frac{g}{3}$$
  
 $(L^{-1}) \qquad F^{-1}$   
 $(L^{-2}) \qquad (L^{-2}) \qquad (L^{-2$ 

• . • . .

-> two-body /interacting  
H(S) = 
$$\sum_{i=1}^{L} \sum_{j=1}^{r} S_i S_j + \sum_{i=1}^{r} A_i S_j$$
  
Tij  $\in \mathbb{R}$  . Lij  $\in \mathbb{R}$   
-> measure correlations  
between gives  
-> multi-body:  
H(S) =  $\sum_{i_1, \dots, i_k} T_{i_0, i_2, \dots, i_k} S_{i_k} S_{i_2} \cdots S_{i_k}$   
- ground state configuration: Sas  
H(Sas)  $\leq$  H(S) HS  
Sas minimizes the energy H(S)  
Eas = H(Sas) : ground state energy  
=> a system can be in any contig. S  
with probability  $p(S)$  + only  $(S)$   
which configuration is more likely?  
Boltzman distribution:  $p(S) := \frac{e^{-\beta}H(S)}{Z}$ 

B= 1/2 inverse temperature

$$H(S): energy function
Z: partition durction / sum [normalization
$$\frac{Z}{2}: \frac{e^{-\beta H(S)}}{Z} = 1 \quad (=> 2_{\beta}:= \sum_{33} e^{-\beta H(S)})$$

$$\frac{1}{2} \frac{e^{-\beta} H(S)}{Z} = 1 \quad (=> 2_{\beta}:= \sum_{33} e^{-\beta H(S)})$$

$$\frac{1}{2} \frac{1}{2} \frac{1}{Z} = 1 \quad (=> 2_{\beta}:= \sum_{33} e^{-\beta H(S)})$$

$$\frac{1}{2} \frac{1}{2} \frac{1}{Z} = 1 \quad (=> 2_{\beta}:= \sum_{33} e^{-\beta H(S)})$$

$$\frac{2^{N} configurations}{configurations}$$

$$\frac{2^{N} configurations}{configurati$$$$

Monte Carlo Methods -broad def: a class of computational algos that refy on repeated random socipling -widely used in · optimization (->RL) · generating samples from a prob. distr. . numerical (high-dimensional) integration - Markov Chain Monke Carlo (MCMC) idea: design a Markov chain, whose stationary distr. IT is the target distribution p which we want to sample -> obtain a sample from p by recording the states in the Markot chain t  $(x_{t-i}) \xrightarrow{p(x_{t}/x_{t-i})} (x_{t}) \xrightarrow{p(x_{t+i}(x_{t}))} (x_{t-i})$ P(x/x'): transition probability

• • - t

2) acceptance / rejection skp:  
let A(x', x) be the acceptance distr.  
to accept the proposed state x'.  
=> transition prob.: 
$$p(x'|x) = g(x'|x) A(x',x)$$
  
-> phugging into detailed balance:  
 $\frac{A(x',x)}{A(x,x')} = \frac{g(x|x') P(x')}{g(x'|x) P(x)}$  (can replace  
 $\frac{A(x',x)}{A(x,x')} = \frac{g(x|x') P(x)}{g(x'|x) P(x)}$  (can replace  
 $\frac{A(x',x)}{A(x,x')} = \frac{g(x|x') P(x)}{g(x'|x) P(x)}$  (can replace  
 $\frac{A(x',x)}{P(x)} = \frac{g(x|x') P(x)}{g(x'|x) P(x)}$  (can replace  
 $A(x',x) = \frac{g(x|x') P(x)}{g(x'|x) P(x)}$  (can replace  
 $A(x',x) = \min(1, \frac{g(x|x')}{g(x'|x) P(x)})$   
either:  $A(x,x') = 1$  or  $A(x',x) = 1$   
- pseudo code: (generates samples as  
(Aarkov chain)  
1. Initialize:  
a) pick any initial stake xo  
b) set  $t = 0$ 

2. Iterate:  
a) generate a roudou candidate state  
according to 
$$g(x'|x_t)$$
  
b) compute acceptance prob.  
 $A(x', x_t) = \min(1, \frac{g(x_t | x') P(x')}{g(x'|x_t) P(x_t)})$   
c) accept/reject move:  
i) generate random number  $EED(1)$   
ii) if  $E \in A(x', x_t) \rightarrow accept$  state  
 $g$  set  $x_{t+1} = x'$   
iii) if  $E \wedge A(x', x_t) \rightarrow accept$  state  
 $g$  set  $x_{t+1} = x'$   
iii) if  $E \wedge A(x', x_t) \rightarrow mercet$  state  
 $g$  set  $x_{t+1} = x_t$   
d) hierement  $t \rightarrow t+1$   
 $\Rightarrow$  sequence  $1x_0, x_0, \dots, x_7$  gives an  
empirical sample from  $P(x)$   
-intuition: (for A)

- Caveats;  
1) thermalization / burn-in time  
the number of steps required for the  
Markov chain to enter the high-prob.  
parts of configuration space  
2) anto-correlation time:  
states: 
$$x_{t,i}$$
,  $x_{t}$ ,  $x_{t+i}$ , ... are correlated  
-> avoid this by "measuring", i.e.  
recording a state in the socyple,  
every Nento-corr steps  
[Xo],  $x_{n,i}$ ,  $x_{nother}$ ,  $[X_{nine} + 1]$   
· Nanto-corr is observable dependent, i.e.  
if we use  $\{x_0, x_1, ..., x_7\}$  to estimate  
an observable  $O:$   
 $\langle O \rangle = \int P(x) D(x) dx$   
 $\approx -f \sum_{i=r}^{T} O(X_i)$   
 $\langle O(t) O(0) \rangle 1$