- finite Markov decision process (MDP)
(A) R, Ra (A)
p(S, R/S, A) p(S, Ra (S), A)
a Markov process on S x A x R space
provide a mathematical abstraction for
the problem: goal-directed learning from
interactions
the transition prob. p depends only on the
preceding state and action , not on the history
p(s', r | s, a] := Pr (St = s', Rt = r | St = s, At = a)
for a \$s'E S, a Ed(S), rER
- defines the dynamics of the MDP

$$\sum_{s' \in S} \sum_{reR} p(s', r | s, a) = l + se S, a Ed(s)
- state transition probability
p(s' | s, a) := Pr (St = s' | St = s, At = a)
= Z p(s' r | s, a)
= Pr (St = s' | St = s, At = a)
= Z p(s' r | s, a)
(marginalize / integrate out rewards)$$

-2 -

-s it rewards are stochastic:
,
$$r(s,a) := E_p [R_t | S_{t-1} = s, A_{t-1} = a]$$

 $= \sum_{r \in R} \sum_{s \in S} r p(s', r | s, a)$
 $expected veward for state-active periv (s, a)$
 $r(s,a,s') := E_p [R_t | S_{t-1} = s, A_{t-1} = a, S_t = s]$
 $= \frac{\sum_{r \in R} r p(s', r | s, a)}{\sum_{r \in R} p(s', r | s, a)} = \sum_{r \in R} r \frac{p(s', r | s, a)}{p(s', r | s, a$

- 4-

Policics Plalue Functions
How does the RL agent choose actions?
idea: agent observes state St of the env.
Gan we correlate states R expected return?
value function: estimate "how good" it is for
the env. To be in a given state
mode: future rewards depend on what
actions the agent will take

$$\Rightarrow$$
 value functions are defined wrt
particular ways of acting, called
policies
policies
policy: $\pi : \mathcal{K} S \implies Corll
(a, S) \mapsto \pi(alS)$
probability to take action a in the state S
 $\sum_{act(alS)} = 1$ (normalized)
acts
) deterministic policy: ("delta"-function policy)
 $\pi(alS) = \delta_{a,a} = \begin{cases} 1, if a = a \\ D, otherwise$

- 7 -

- 8-

$$-recursive relation for $V_{rr}(s)$
recall: $G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \int^{3} R_{t+3} + \dots$

$$= R_{t+1} + \gamma \left(R_{t+2} + \gamma R_{t+3} + \int^{2} R_{t+4} + \dots \right)$$

$$= : G_{t+1}$$$$

$$V_{\pi}(s) = \overline{E_{\pi}} [G_{t+} | S_{t} = s]$$

$$= \overline{E_{\pi}} [R_{t+1} + \gamma G_{t+1} | S_{t} = s]$$

$$= \overline{E_{\pi}} [R_{t+1} | S_{t} = s] + \gamma \overline{E_{\pi}} [G_{t+1} | S_{t} = s]$$

$$= \overline{E_{\pi}} [R_{t+1} | S_{t} = s] + \gamma \overline{E_{\pi}} [G_{t+1} | S_{t} = s]$$

$$= \sum_{\alpha \in \mathcal{H} | \mathcal{Y}} \pi [a|s] \sum_{r \in \mathcal{R}} \sum_{s' \in S} p(s', r/s, a) r$$

$$+ \gamma \sum_{\alpha \in \mathcal{H} | \mathcal{S}} \pi (a|s) \sum_{r \in \mathcal{R}} \sum_{s' \in S} p(s', r/s, a) \frac{F_{\pi}}{F_{\pi}} [G_{t+r} | S_{t+s}]$$

$$= \sum_{\alpha \in \mathcal{H} | \mathcal{S}} \pi (a|s) \sum_{r \in \mathcal{R}} \sum_{s' \in S} p(s', r|s, a) (r + \gamma \vee \pi (s'))$$
relates $\mathcal{V}_{\pi}(s) = \sum_{\alpha} \pi (a|s) \sum_{r \in \mathcal{R}} \sum_{s' \in S} p(s', r|s, a) (r + \gamma \vee \pi (s'))$
relates $\mathcal{V}_{\pi}(s) = \mathcal{R} \times \pi (s') = \sum_{r \in \mathcal{R}} \pi (a|s) \sum_{r \in \mathcal{R}} \sum_{s' \in S} p(s', r|s, a) [r + \gamma \vee \pi (s')]$

$$\cdot \text{averages all possibilities for trajectories}$$
weighting each by its probability for occuring $-g^{-1}$

• the value of the storting state V(s) is
equal to the disconnect value of the
expected next state, plus the reward
expected along the trajectory
•
$$V_{\pi}$$
 is the unique solution of the
Bellman eq. I think MDPs)
-Action-value tunctions : q -tunctions
(of a policy π)
 q_{π} : $S \times A \longrightarrow R$
 $(s,a) \longmapsto q_{\pi}(s,a)$
 $q_{\pi}(s,a) \coloneqq F_{\pi}[G_{t}|S_{t}=s, A_{t}=a]$
 \rightarrow the expected return storting in a state s
and taking the action a , and to lowing
the policy π afterwards
show (HW) :
 $q_{\pi}(s,a) = \sum_{r \in R} \sum_{s' \in S} p(s',r|s,a)[r + f V_{\pi}(s')]$
- relation between $V_{\pi}(s) = R q_{\pi}(s,a)$
 $V_{\pi}(s) = \sum_{a \in t(s)} T(a|s) q_{\pi}(s,a)$

.

- 10-

Example: Gridworld:
$$r(s,a,s')$$

rewards: $r(A, :, A') = \pm 10$ Haff
 $r(B, :, B') = \pm 5$ Haff
 $r(B, :, B') = \pm 5$ Haff
 $r(S_{boundary}, a_{n+hide}, s') = -1$
 $r(s, a, s') = 0$, otherwise
stakes: squares on grid
actions: cfs ; cannot more across bunndaries
policy: $\pi(a/s) = \frac{1}{1+1} = \frac{1}{7}$ equiprobable random
 $policy: \pi(a/s) = \frac{1}{1+1} = \frac{1}{7}$ equiprobable random
 $policy$: $\pi(a/s) = \frac{1}{1+1} = \frac{1}{7}$ equiprobable random
 $policy$: $\pi(a/s) = \frac{1}{1+1} = \frac{1}{7}$ equiprobable random

				f	
3.3	2	8.8	4.7	5-3	1.5
1.3	5	3. U	2.3	1.9	0.5
0.	1	0-7	0.7	0. 4	-0.4
-[-(С	-U.Y	-0.Y	-0.6	-1.2
_l.9	Ì	-1.3	-1.2	-l·Y	-2.0

Optimal policies
$$\mathcal{R}$$
 value tunches
-ordering relation for policies:
 $\pi \ge \pi'$, iff $V_{\pi}(s) \ge V_{\pi'}(s)$ $\# s \in S$
there exists (at least one) policy that is
better than or equal to all other policies
 $\Longrightarrow \text{optimal policy}: \pi_{\pi}$
-optimal value function: V_{π}
 $\xrightarrow{} \text{optimal policy}: \pi_{\pi}$
 $\xrightarrow{} \text{optimal value function}: V_{\pi}$
 $\xrightarrow{} \text{optimal q-function}: q_{\pi}$
 $q_{\pi}(s, a) := \max q_{\pi}(s, a) \quad \# s \in S$
 $\xrightarrow{} q_{\pi}(s, a) = \mathbb{E} \left[R_{HI} + V_{\pi}(S_{HI}) | S_{t} = s, A_{t} = a \right]$
 $\xrightarrow{} \text{node}: \text{optimal policy} \pi_{\pi} \text{ may not be unique but $V_{\pi} \otimes q_{\pi}$ are unique$

-/2-

- Bellman optimality equation for U. (s):
U. (s) = max q. (J,a) = max q. (J,G)
= max IF [G. 1] St = s, At = a]
= max IF [Rt+1 + y Gr+1 | St = s, At = a]
= max E[Rt+1 + y V. (St+1) | St = s, At = a]
= max E[Rt+1 + y V. (St+1) | St = s, At = a]
= max [Rt+1 + y V. (St+1) | St = s, At = a]
= wax [St+1]
= wax
$$\sum_{s',r} p(s', r | s, a) [r + y V. (s')]$$

-> if Vy is known then an optimal policy
can be defined by taking all possible
actions from s, and comparing the
V. (s') values
=> qreedy policy (deterministic)
-> V. turns the total expected veture to
a local quantity, available at each step.
=> a one-step the color seach with V.
y relds long-term optimal actions

-13-

- 14-

$$- \underbrace{Example}_{V_{\pm}(s)} = optimal policy for Gridworld:$$

$$V_{\pm}(s) = optimal policy for Gridworld:$$

- /5-