Tabular TD(0) for estimating v_{π}

Input: the policy π to be evaluated Algorithm parameter: step size $\alpha \in (0, 1]$ Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0Loop for each episode: Initialize SLoop for each step of episode: $A \leftarrow \text{action given by } \pi \text{ for } S$ Take action A, observe R, S' $V(S) \leftarrow V(S) + \alpha [R + \gamma V(S') - V(S)]$ $S \leftarrow S'$ until S is terminal

-> vecall:
V_π(s) =
$$E_{\pi} [G_{t} | S_{t} = s] \leftarrow MC$$
 methods
= $E_{\pi} [R_{t+1} + \gamma G_{t+1} | S_{t} = s]$
= $E_{\pi} [R_{t+1} + \gamma V_{\pi} (S_{t+1}) | S_{t} = s] \leftarrow TD$
methods
.MC: have estimate $b/c = E_{\pi} [G_{t} | S_{t} = s]$
[TD(d) is not known; estimated from a sample
.TD(d): have astimate $b/c = r\delta$
i) expectation under $\pi : E_{\pi}$
ii) we use current estimate $V(S_{t+1})$ instead
of true value $V_{\pi}(S_{t+1})$
-Example: driving home (Example 6.1.)

State	Elapsed Time (minutes)	value Predicted Time to Go	Predicted Total Time
	(minutes)		
leaving office, friday at 6	0	30	30
reach car, raining	5	35	40
exiting highway	20	15	35
2ndary road, behind truck	30	10	40
entering home street	40	3	43
arrive home	43	0	43

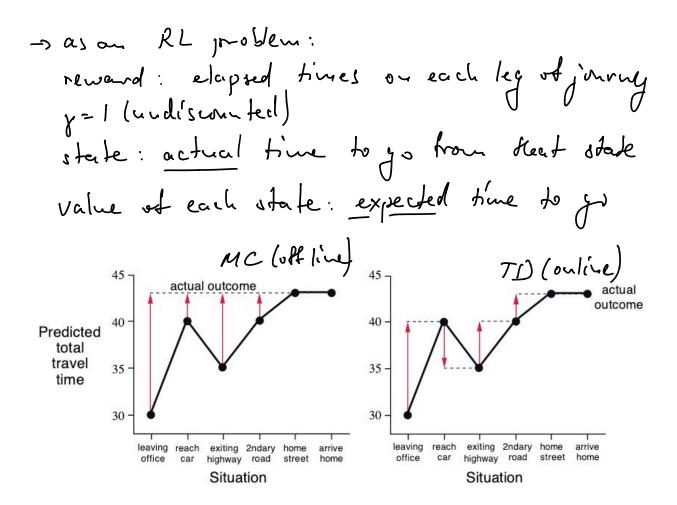


Figure 6.1: Changes recommended in the driving home example by Monte Carlo methods (left) and TD methods (right).

what are the optimal predictions based on
His data for V(A) and V(B)?
-> start with state B

$$\cdot V(B) = \frac{6}{8} = \frac{3}{7}$$

 $\cdot V(A) = ?$
 $\rightarrow \underline{MC}$: single data point for $A \Rightarrow V(A) = D$
 $\rightarrow \underline{TD}$: $A \rightarrow B$ & we know that $V(B) = \frac{3}{7}$
 $\Rightarrow V(A) = \frac{3}{7}$

$$\frac{SARIA}{SARIA}: on -policy TD - control$$
• on -policy algo to have $q_{\pm} = q_{\pm}$
• on -policy algo to have $q_{\pm} = q_{\pm}$
• q_{\pm}

Initialize Q(s, a), for all $s \in S^+$, $a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$ Loop for each episode: Initialize SChoose A from S using policy derived from Q (e.g., ε -greedy) Loop for each step of episode: Take action A, observe R, S'Choose A' from S' using policy derived from Q (e.g., ε -greedy) $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma Q(S', A') - Q(S, A)]$ $S \leftarrow S'; A \leftarrow A';$ until S is terminal

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

 $\begin{array}{l} \mbox{Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$ \\ \mbox{Initialize $Q(s,a)$, for all $s \in S^+$, $a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$ \\ \mbox{Loop for each episode:} \\ \mbox{Initialize S} \\ \mbox{Loop for each step of episode:} \\ \mbox{Choose A from S using policy derived from Q (e.g., ε-greedy) \\ \mbox{Take action A, observe R, S' \\ $Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma \max_a Q(S',a) - Q(S,A)]$ \\ $S \leftarrow S'$ \\ \mbox{until S is terminal} \end{array}$

-> Bellman env:

· convergence to qu(S,a) is guaranteel,
provided all (3,a)-paired are visited
an intivite number of times
Expected SARSA
- at the ttl: take into account how likely
each action 18, under the behavior polity

$$Q(St,At) \leftarrow Q(St,At) +$$

 $t d(Rt+1 + y \sum_{a} \pi(a|St+1)Q(St+1,a) - Q(St,At))$
 $\Rightarrow alg orights is same as Q learning
Remarks:
• here, we use the target policy π to
generate the behavior (ou-policy), but
we can use any other prolicy !
 $\Rightarrow expected Sarsa is odt - policy!
• special case: π is the greedy policy with
 $\Rightarrow \sum_{a} \pi(a|St+1)Q(St+1,a) = max Q(St+1,a)$
 $\Rightarrow back to Q-learning$$$

Maximi zahon Bian & Double Learning
-> all control algorithms so bar involve
some maximizeration procedure, e.g.
argman, max, TE, etc....
-> can lead to a significant bias
-Example:
N(-01,1)
% left
actions 50%
from A
25%
0
100
0
100
25%
0
100
100
Episodes

$$Q(A, heft) = -0.1 < \infty$$
 (expected veturn
 $Q(A, night) = 0$ starting from A)
issue: agent may be fooled to take left b/c of
some partice rewards occurring there

-9-

-10-

Double Q-learning, for estimating $Q_1 \approx Q_2 \approx q_*$

Algorithm parameters: step size $\alpha \in (0, 1]$, small $\varepsilon > 0$ Initialize $Q_1(s, a)$ and $Q_2(s, a)$, for all $s \in S^+$, $a \in \mathcal{A}(s)$, such that $Q(terminal, \cdot) = 0$ Loop for each episode: Initialize SLoop for each step of episode: Choose A from S using the policy ε -greedy in $Q_1 + Q_2$ Take action A, observe R, S'With 0.5 probabilility: $\overline{Q_1(S,A)} \leftarrow \overline{Q_1(S,A)} + \alpha \left(R + \gamma Q_2(S', \operatorname{argmax}_a Q_1(S',a)) - Q_1(S,A) \right)$ else: $Q_2(S, A) \leftarrow Q_2(S, A) + \alpha \Big(R + \gamma Q_1 \big(S', \operatorname{argmax}_a Q_2(S', a) \big) - Q_2(S, A) \Big)$ $S \leftarrow S'$ until S is terminal -> double Q -learning doubles the memory requirements but does not increase the CPU time /runtime. HW: Exercise 6.13 : write down algorithm for Double Ergented Source RL Alg.'s (not complete) online Attice. MC methods DP TD ourpolicy off-policy enrice R-learning, Expected Sorra -s off-policy Ex: ES, policy gradient (can be online) - 11 -