- /-

1) which variational ausate /model do we
use for
$$\Theta \mapsto \overline{\pi_{\Theta}}(a|s)$$
?
e.g. i) if action space t is discrek:
softmax policy:
 $\overline{\pi_{\Theta}}(a|s) := \frac{e}{Bh_{\Theta}}(s;a)$
 $\overline{Z} \in Bh_{\Theta}(s;a)$
 $\overline{Z} \in Bh_{\Theta}(s;a)$
 $B : (inverse)$ temperature
 $B = \Theta : policy$ is greedy
 $B = \Theta : equiprobable policy$
 $h_{\Theta}(s;a) : some parametrized temetria
 $an S \times A$, e.g. DNN or CMM
 eq . And worlds, there games, board games
 $ii)$ continuous action space t
 eq . Gridworlds, there i games, board games
 $iii)$ continuous action space t
 ag . Gaussian $policy$:
 $\overline{\pi_{\Theta}}(a|s) := \frac{1}{\sqrt{2\pi}\sigma_{\Theta}^{2}(s)} = -\frac{(a - \mu_{\Theta}(s))^{2}}{2\sigma_{\Theta}^{2}(s)}$$

-2-

-3-

$$\begin{split} & \mathcal{R}_{\mathcal{B}} \ \mathcal{V}_{\overline{\mathbf{h}}_{\mathcal{O}}}(s) = \mathcal{P}_{\mathcal{O}} \stackrel{>}{\geq} \mathcal{T}_{\mathcal{O}}(a|s) \ q_{\overline{\mathbf{h}}_{\mathcal{O}}}(s,a) + \mathcal{T}_{\mathcal{O}}(a|s) \ \mathcal{P}_{\mathcal{O}} \ q_{\overline{\mathbf{h}}_{\mathcal{O}}}(s,a) \\ &= \frac{\sum}{a} \left\{ \left(\mathcal{P}_{\mathcal{O}} \ \overline{\mathcal{T}}_{\mathcal{O}}(a|s) \right) \ q_{\overline{\mathbf{h}}_{\mathcal{O}}}(s,a) + \mathcal{T}_{\mathcal{O}}(a|s) \ \mathcal{P}_{\mathcal{O}} \ q_{\overline{\mathbf{h}}_{\mathcal{O}}}(s,a) + \\ &+ \mathcal{T}_{\mathcal{O}}(a|s) \ \mathcal{P}_{\mathcal{O}} \stackrel{>}{\geq} p(s'|s,a) \ \mathcal{L}_{\mathcal{T}} + \mathcal{V}_{\overline{\mathbf{h}}_{\mathcal{O}}}(s') \right\} \\ \stackrel{=}{=} \frac{\sum}{a} \left\{ \left[\mathcal{P}_{\mathcal{O}} \ \overline{\mathcal{T}}(a|s) \right] \ q_{\overline{\mathbf{h}}_{\mathcal{O}}}(s,a) + \\ &+ \mathcal{T}_{\mathcal{O}}(a|s) \ \mathcal{P}_{\mathcal{F}} \ p(s'|s,a) \ \mathcal{P}_{\mathcal{O}} \ \mathcal{V}_{\overline{\mathbf{h}}_{\mathcal{O}}}(s') \right\} \\ \stackrel{=}{=} \frac{\sum}{a} \left\{ \left[\mathcal{P}_{\mathcal{O}} \ \overline{\mathcal{T}}(a|s) \right] \ q_{\overline{\mathbf{h}}_{\mathcal{O}}}(s,a) + \\ &+ \mathcal{T}_{\mathcal{O}}(a|s) \ \mathcal{P}_{\mathcal{F}} \ p(s'|s,a) \ \mathcal{P}_{\mathcal{O}} \ \mathcal{V}_{\overline{\mathbf{h}}_{\mathcal{O}}}(s') \right\} \\ \stackrel{=}{=} \frac{\sum}{a} \left\{ \left[\mathcal{P}_{\mathcal{O}} \ \overline{\mathcal{T}}_{\mathcal{O}}(a|s) \right] \ q_{\overline{\mathbf{h}}_{\mathcal{O}}}(s,a) + \\ &+ \mathcal{T}_{\mathcal{O}}(a|s) \ \mathcal{P}_{\mathcal{F}} \ p(s'|s,a) \ \mathcal{P}_{\mathcal{O}} \ \mathcal{V}_{\overline{\mathbf{h}}_{\mathcal{O}}}(s') \right\} \\ \stackrel{=}{=} \frac{\sum}{a} \left\{ \left[\mathcal{P}_{\mathcal{O}} \ \overline{\mathcal{T}}_{\mathcal{O}}(a|s) \right] \ q_{\overline{\mathbf{h}}_{\mathcal{O}}}(s,a) + \\ &+ \mathcal{T}_{\mathcal{O}}(a|s) \ \mathcal{P}_{\mathcal{F}} \ p(s'|s,a) \ \mathcal{P}_{\mathcal{O}} \ \mathcal{V}_{\overline{\mathbf{h}}_{\mathcal{O}}}(s') \right\} \\ \stackrel{=}{=} \frac{\sum}{a} \left\{ \left[\mathcal{P}_{\mathcal{O}} \ \overline{\mathcal{T}}_{\mathcal{O}}(s,a) \right] \ q_{\overline{\mathbf{h}}_{\mathcal{O}}}(s',a) + \\ &+ \mathcal{T}_{\mathcal{O}}(a|s) \ \mathcal{P}_{\mathcal{O}} \ \mathcal{V}_{\overline{\mathbf{h}}_{\mathcal{O}}}(s') \ \mathcal{P}_{\mathcal{O}} \ \mathcal{V}_{\overline{\mathbf{h}}_{\mathcal{O}}}(s') \right\} \\ \stackrel{=}{=} \frac{\sum}{a} \left\{ \left[\mathcal{P}_{\mathcal{O}} \ \mathcal{T}_{\mathcal{O}}(s',a) \right] \ q_{\overline{\mathbf{h}}_{\mathcal{O}}}(s'') \ q_{\overline{\mathbf{h}}_{\mathcal{O}}}(s',a') \right\} \\ \stackrel{=}{=} \frac{\sum}{a} \left\{ \left[\mathcal{P}_{\mathcal{O}} \ \mathcal{T}_{\mathcal{O}}(s',a) \right] \ q_{\overline{\mathbf{h}}_{\mathcal{O}}}(s'') \ q_{\overline{\mathbf{h}}_{\mathcal{O}}}(s',a') \right\} \\ \stackrel{=}{=} \frac{\sum}{a} \left\{ \left[\mathcal{P}_{\mathcal{O}} \ \mathcal{T}_{\mathcal{O}}(s',a) \right] \ \mathcal{P}_{\mathcal{O}} \ \mathcal{P}_{\overline{\mathcal{O}}}(s'') \ q_{\overline{\mathcal{O}}}(s'') \right\} \\ \stackrel{=}{=} \frac{\sum}{a} \left\{ \left[\mathcal{P}_{\mathcal{O}} \ \mathcal{T}_{\mathcal{O}}(s',a') \right\} \right\} \\ \stackrel{=}{=} \frac{\sum}{a} \left\{ \left[\mathcal{P}_{\mathcal{O}} \ \mathcal{T}_{\mathcal{O}}(s',a') \right] \ \mathcal{P}_{\mathcal{O}} \ \mathcal{P}_{\mathcal{O}}(s'') \ q_{\overline{\mathcal{O}}}(s'') \right\} \\ \stackrel{=}{=} \frac{\sum}{a} \left\{ \left[\mathcal{P}_{\mathcal{O}} \ \mathcal{P}_{\mathcal{O}}(s',a') \right\} \right\} \\ \stackrel{=}{=} \frac{\sum}{a} \left\{ \left[\mathcal{P}_{\mathcal{O}} \ \mathcal{P}_{\mathcal{O}}(s',a') \right\} \\ \stackrel{=}{=} \frac{\sum}{a} \left\{ \left[\mathcal{P}_{\mathcal{O}} \ \mathcal{P}_{\mathcal{O}}(s',a') \right\} \right\} \\ \stackrel{=}{=}$$

= $\sum_{x \in S} \sum_{k=0}^{n} P_{T_{T_{\theta}}}(s \rightarrow x; k) \sum_{a} \left[P_{\theta} T_{\theta}(a|x) \right] q_{T_{\theta}}(x; a)$ where $P_{T_{\theta}}(s \rightarrow x; k)$ is the prob. to transition, then $s \rightarrow x$ in k steps after following T_{θ} - 6-

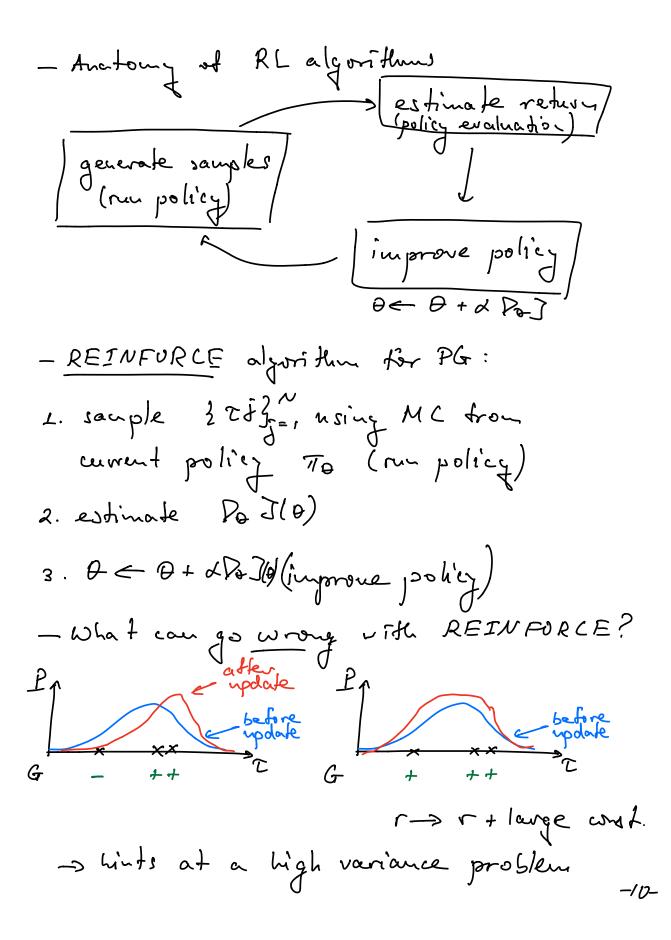
-sevaluate on initial stak so:
Po
$$I(\theta) = \sum_{s \in S} \left(\sum_{k=0}^{\infty} P_{T_{\theta}}(s_{0} \rightarrow S; k) \right) \sum_{a} \left(P_{0} T_{\theta}(a|s) \right) q_{b}(s|d)$$

=: $q_{T_{\theta}}(s)$
iscue: $q_{T_{\theta}}(s)$ is cost a prob. distr.
(not normalized)
Po $I(\theta) = \sum_{S'} q_{T_{\theta}}(s') \sum_{s} \frac{q_{T_{\theta}}(s)}{s} \sum_{s''} q_{T_{\theta}}(s'') \sum_{a} P_{0} T_{0}(a|s) \times q_{T_{\theta}}(q_{\theta})$
= const.
(indep. of θ) =: $q_{T_{\theta}}(s) \sum_{s''} q_{T_{\theta}}(s'') \sum_{a} P_{0} T_{0}(a|s) \times q_{T_{\theta}}(q_{\theta})$
= const.
(indep. of θ) =: $q_{T_{\theta}}(s) \sum_{s''} q_{T_{\theta}}(s'') \sum_{a} P_{0} T_{0}(a|s) \times q_{T_{\theta}}(s,a)$
overall const in GD is irrevant in practice
 b/c it can be absorbed in the leargning vate/
step size of GD.
Po $T(\theta) \approx \sum_{s} p_{T_{\theta}}(s) \sum_{a} P_{0} T_{0}(a|s) \times q_{T_{\theta}}(s,a)$
 $P_{0} J(\theta) \approx \sum_{s} p_{T_{\theta}}(s) \sum_{a} P_{0} T_{0}(a|s) \times q_{T_{\theta}}(s,a)$
 $-problem : p_{T_{\theta}}(s) requires knowledge of
the transition prob. $p(s'/s,a)$
 $-p_{it}$ requires a model
 $-T_{-}$$

$$\exists var snt : MC methods:
used to write $Po J(0)$ as an expectation
over trajectories $T = (fo, Ao, S, A, A, ...)$

$$Po J = \sum_{s,a} \mu_{To}(s) q_{To}(s,a) \tau_{0}(a/s) \underbrace{Po To}(a/s) = \frac{1}{To}(a/s) = \frac{1}$$$$

-9-



- how do we reduce the variance in PG?
1) take into account causality:
Do J ~ J
$$\sum_{j=1}^{N} \sum_{t=1}^{T} Do \log Fro (at 1st) \sum_{t=1}^{T} r(st, at)$$

past actions affect tubere stakes Prewards
but not vice-versa!
Tt, cannot affect rt at test'
 $\sum_{t=1}^{T} r(st, at) \longrightarrow \sum_{t'=t}^{T} r(st, at) = qt$
reduces variance b/c we have to tum
up ferver numbers
 $qt : \frac{reward - to - q^2}{q}$
2) baselines:
we probable (intritic)
i) eq. $r \rightarrow r + 10^9 \rightarrow all$ trajectories
seem to be prod

-//-

$$\frac{\operatorname{van} t}{\operatorname{tranke}} + \operatorname{tranke}_{t_{1}} + \operatorname{van}_{t_{2}} + \operatorname{van}_{t_$$

.

-/2-

- improved PG with bateline: (lower variance)

$$P_{0}J = \frac{1}{N} \sum_{j=1}^{N} \frac{1}{t=r} V_{0} l_{0} T_{0} (at 1st) \sum_{t=t}^{T} (r(st), at, 1-b)$$

- optimal baseline for minimal variance:
recall:
 $Var(S) = E(X^{2}J - (E(XJ))^{2}$
 $Var(b) = E_{TTP} [(P_{0} l_{0} T_{0})^{2}] - \frac{E_{0}P[P_{0} l_{0} T_{0} G_{0}]^{2}}{-\sum_{indep.} st b!}$
 $= E_{TTP} [P_{0} l_{0} l_{0} T_{0})^{2} (-2G + 2b)]$
 $= -2E_{TTP} [(P_{0} l_{0} T_{0})^{2} G_{1}^{2} + 2bE_{TTP} [(P_{0} l_{0} T_{0})^{2} G_{1}^{2}]$
 $= boptimal = \frac{E_{TTP} [(P_{0} l_{0} T_{0})^{2} G_{1}^{2}]}{E_{TTP} [(P_{0} l_{0} T_{0})^{2} G_{1}^{2}}$
 $= boptimal = \frac{E_{TTP} [(P_{0} l_{0} T_{0})^{2} G_{1}^{2}]}{E_{TTP} [(P_{0} l_{0} T_{0})^{2} G_{1}^{2}]}$
 $= boptimal = \frac{E_{TTP} [(P_{0} l_{0} T_{0})^{2} G_{1}^{2}]}{E_{TTP} [(P_{0} l_{0} T_{0})^{2} G_{1}^{2}]}$
 $= boptimal = \frac{E_{TTP} [(P_{0} l_{0} T_{0})^{2} G_{1}^{2}]}{E_{TTP} [(P_{0} l_{0} T_{0})^{2} G_{1}^{2}}$
 $= boptimal humores about all divertions in J(t)-lowd scape -13-$