Value Function Methods - PG methods suffer from high variance when estimating Po J(4) - AC methods introduce fitted value iteration to reduce the variance in the All estimate of Do J(b) Why do we need the actor To? . can we get rid of it? - anatomy of RL algorithme with value thurching approx. Bt Qp fit a model to estimate return generate sænsles O(nu joolicy) improve policy e.g. use a (ε) -greedy policy: $T \in T = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, it $\alpha = \operatorname{argmax} \mathcal{R}_{0}^{T}$

-/-

- cannot bit
$$V_{p}^{T}$$
, time we can't importe
the policy on line
- argmax $A^{T}(s, a) = \arg(a \times Q^{T}(s, a))$
=> fit the Q tunction $\rightarrow Q_{p}^{T}$
- Algorithm: Filled Q-iteration
a. collect data set (repeat S time)
 $2(si, ai, ri, si)]_{i=1}^{i=1}$
using some policy
(Q-learning is off-policy)
2. compute target:
 $(x \in Y) = r(si, ai) + Y \max(Q_{p}^{T}(s', a)) - \frac{Y}{1})^{2}$
s. do supervised regression
 $Y \in \arg(a) = \frac{Z}{1} ||Q_{p}^{T}(s', a)| - \frac{Y}{1}||^{2}$
assumed
 $work \cdot inp$
- subtordinery (G)

- Q-learning is off-policy
- Q-learning is off-policy
trajectoriel
but every transition s ->s'l's indep.
token into account
issue: it doeen't work!
- Algonitum: loulice Delearning (withing Q-learning)
1. take action as using some policy
I observe (strag. rj. str): single transition
2. til = v(strag. rj. str): single transition
3.
$$\varphi \in \operatorname{argmin} \frac{1}{2} || Q_{\varphi}(strag) - ytill2$$

no run 2 !
uote: argmin $\frac{1}{2} || Q_{\varphi}(strag) - ytill2$
 $= R_{\varphi} \frac{1}{2} || Q_{\varphi}(strag) - ytill2$
 $= (R_{\varphi} Q_{\varphi}(strag)) + (Q_{\varphi}(strag) - ytill2) = 0$
is treaked !
to some 1

- 5-

-> new transitions sampled using, e.g. E-greedy policy w.r.t. Qp Note: we don't immediately train on the most recent deta point (maybe we never use it for training) . transitions sampled <u>ind</u> from butter -6-

→ O-iteration w/ replay butter:
1. collect data set ? (sj:aj:rj:sj:)}.
nsing some policy; add it to butter B
2. sample a batch from B uniternly
3.
$$\varphi = \varphi - \Delta \sum R_p Q_p(sj:aj) \times j = 3di$$

 $\times \left[Q_p(sj:aj) - [r(sj:aj) + y max Q_p(sj:aj)] \right]$
 $\varphi = \frac{1}{2} + \frac{Q - network}{2} + \frac{1}{2} + \frac{Q - network}{2} + \frac{1}{2} + \frac{1$

-7-

-8-

1. save tanget Qui-net params y'exp
2. collect dataset ? (sjiqi, M; sji)? usig
(some policy; add it to butter B;
(N 33. sample a batch from B uniformly
(N update Qui-network param
y e p-d D;
$$\pm \sum 1/Q_p (sjiqi) -$$

- (r(sjiqi) + f max B/s', g')]/?
· inner loop of steps 3 Dy regresses on
stationary tangets di
- algorithm: DRN:
(Q-learning with a replay butter l' tanget Quet)
1. take aj using some policy, e.g. E-gierdy with
observe (sjiqi, n', sj'); odd it to butter B.
2. sample minibadels ? (sjiqi, rj, sj'); from
B uniformly
3. compute: y = r(sjiqi) + y max Q/sj, q')
using tanget Qy-network
y is indep. of y
-g.

-10-

avoid evaluating a & function at an
action a' which the arguax of the same
Q function
onse by & target net By:
standard Q-learning:
$$y = r + p R_{p'}(s', arguar R_{p'}(s', d))$$

duble Q-learning with gates the
overestimation of Q-values!
- Practical implemention: "best prochice"
- untwork architecture for $R_{p'}(s, a)$
i) $s \longrightarrow DNN_{p} \longrightarrow Q(s, a)$
i) $s \longrightarrow DNN_{p} \longrightarrow Q(s, a)$
i) $s \longrightarrow DNN_{p} \longrightarrow Q(s, a)$
i) $R(s, a_{1AI}) = a_{1AI}$
- Q-learning takes time to stabilize:
· test your code on a simple take first
e.g. cartpole with a simple state space
mountain car, etc.

-14-

-15-