
Reinforcement Learning Course: WiSe 2020/21

Marin Bukov
Faculty of Physics, Sofia University, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria

(Dated: November 1, 2020)

I. REINFORCEMENT LEARNING (RL) ENVIRONMENTS

In this notebook, we define the backbone code for RL environments, following OpenAI Gym.
Then, we create some example environments that we shall use in subsequent coding sessions throught the

course: we will create three gridworld environments: GridWorld, GridWorld2, and Windy GridWorld. We
also create a Qubit environment, and discuss some OpenAI Gym environments.

In []: import numpy as np
from scipy.linalg import expm

In []: class MyEnv():
"""
Gym style environment for RL. You may also inherit the class structure from␣

↪→OpenAI
Gym.

Parameters:
n_time_steps: int

Total number of time steps within each episode
seed: int

seed of the RNG (for reproducibility)
"""

def __init__(self, n_time_steps, seed):
"""
Initialize the environment.

"""

define action space variables

define state space variables

pass

def step(self, action):
"""
Interface between environment and agent. Performs one step in the␣

↪→environemnt.
Parameters:

action: int
the index of the respective action in the action array

Returns:
output: (object, float, bool)

information provided by the environment about its current␣
↪→state:

https://gym.openai.com/

2

(state, reward, done)
"""

pass

return self.state, reward, done

def set_seed(self,seed=0):
"""
Sets the seed of the RNG.

"""
pass

def reset(self):
"""
Resets the environment to its initial values.
Returns:

state: object
the initial state of the environment

"""
pass

return self.state

def render(self):
"""
Plots the state of the environment. For visulization purposes only.

"""
pass

... add extra private and public functions as necessary

A. GridWorld

Consider the GridWorld problem Example 3.5 from Sutton & Barto’s “Reinforcement Learning: an Intro-
duction”, (MIT Press, 2018):

A 5× 5 grid with open boundary conditions has two pairs of special states: (A,A′) and (B,B′), such that
from state A (B) the environment always goes into stte A′ (B′). The state transitions receive the rewards
r(s, s′):

1. r(A→ A′) = +10
2. r(B → B′) = +5
3. r(s′, s) = 0 for all other states (except when a move from a boundary state s tries to leave the grid, in

which case r = −1).

From each state s, the RL agent can take four possible actions a: north, south, east, and west.
The action space is discrete four-element set A = (north, south, east, west)

3

The state space is the two-dimensional grid S = Z2
5: each state s = (m,n) is labeled by two integers

m,n ∈ {0, 1, 2, 3, 4}. The special states have the coordinates A = (1, 4), A′ = (1, 0), B = (3, 4), and
B′ = (3, 2).

Finally, the reward space is given by the discrete set R = {−1, 0, 5, 10}.

In []: class GridWorldEnv():
"""
Gym style environment for GridWorld
Parameters:

n_time_steps: int
Total number of time steps within each episode

seed: int
seed of the RNG (for reproducibility)

"""

def __init__(self, n_time_steps=10, seed=0):
"""
Initialize the environment.

"""

self.n_time_steps = n_time_steps

define action space variables
self.actions=np.array([0,1,2,3])
#['north', 'south', 'east', 'west'] in coordinate form
self.action_space = [np.array([0,1]), np.array([0,-1]), np.array([1,0]),

np.array([-1,0])]

define state space variables
self.state_A = np.array([1,4])
self.state_Ap = np.array([1,0])
self.state_B = np.array([3,4])
self.state_Bp = np.array([3,2])

set seed
self.set_seed(seed)
self.reset()

def step(self, action):
"""
Interface between environment and agent. Performs one step in the␣

↪→environemnt.
Parameters:

action: int
the index of the respective action in the action array

Returns:
output: (np.array, float, bool)

information provided by the environment about its current␣
↪→state:

(state, reward, done)
"""

check if action tries to take state across the grid boundary
bdry_bool= (self.state[0]==0 and action==3) or (self.state[0]==4 and

4

action==2) \
or (self.state[1]==0 and action==1) or (self.state[1]==4 and

action==0)

environment dynamics (deterministic)
if np.linalg.norm(self.state - self.state_A) < 1E-14:

self.state=self.state_Ap.copy()
reward=10

elif np.linalg.norm(self.state - self.state_B) < 1E-14:
self.state=self.state_Bp.copy()
reward=5

elif bdry_bool:
reward=-1

else:
self.state+=self.action_space[action]
reward=0

done=False # infinite-horizon task

self.current_step += 1

return self.state, reward, done

def set_seed(self,seed=0):
"""
Sets the seed of the RNG.

"""
np.random.seed(seed)

def reset(self):
"""
Resets the environment to its initial values.
Returns:

state: np.array
the initial state of the environment

"""
self.current_step = 0

self.state = np.array([2,2]) #initialize to some state on the grid
return self.state

def sample(self):
"""
Returns a randomly sampled action.
"""
return np.random.choice(self.actions) # equiprobable policy

Let us now test the GridWorld environment. We do so by fixing the number of time steps, n_time_steps,
and the seed. We then create the environment and reset it. Finally, we want to loop over the

5

In []: n_time_steps=20
seed=0

env=GridWorldEnv(n_time_steps=n_time_steps,seed=seed)
env.reset()

for _ in range(n_time_steps):

pick a random action
action=env.sample() # equiprobable policy

take an environment step
state=env.state.copy()
state_p, reward, done = env.step(action)

print("{}. s={}, a={}, r={}, s'={}".format(_, state, env.
↪→action_space[action],

reward, state_p))

B. GridWorld 2

This is a finite-horizon, i.e. episodic, GridWorld environment. We consider the 4 × 4 grid from Example
4.1 in Sutton & Barto.

state space: S = {0, 1, 2, . . . , 15}, where 0 = s = 15 is the terminal state.
action space: A = {north, south, east, west}. Actions trying to take the agent off the grid leave the

state unchanged: to implement this behavior, we will define smaller actions spaces A(sboundary) for all states
sboundary at the bounary of the grid.

reward space: R = {−1}; r(s, s′, a) = −1 for all states s, s′ ∈ S and all allowed actions a ∈ A(s).

In []: class Episodic_GridWorldEnv():
"""
Gym style environment for GridWorld
Parameters:

n_time_steps: int
Total number of time steps within each episode

seed: int
seed of the RNG (for reproducibility)

"""

def __init__(self, n_time_steps=10, seed=0):
"""
Initialize the environment.

"""

self.n_time_steps = n_time_steps

define action space variables
#['north', 'south', 'east', 'west']
self.action_space = [np.array([0,1]), np.array([0,-1]), np.array([1,0]),

np.array([-1,0])]
define the allowed actions from every state s, taking into account the

boundary
self.actions={}
for m in range(4):

6

for n in range(4):

if m==0:
if n==0:

self.actions[m,n]=np.array([0,2])
elif n==3:

self.actions[m,n]=np.array([1,2])
else:

self.actions[m,n]=np.array([0,1,2])

elif m==3:
if n==0:

self.actions[m,n]=np.array([0,3])
elif n==3:

self.actions[m,n]=np.array([1,3])
else:

self.actions[m,n]=np.array([0,1,3])

elif 0<m<3:
if n==0:

self.actions[m,n]=np.array([0,2,3])
elif n==3:

self.actions[m,n]=np.array([1,2,3])
else:

self.actions[m,n]=np.array([0,1,2,3])

define state space variables
the two terminal states
self.state_T1 = np.array([0,0])
self.state_T2 = np.array([3,3])

set seed
self.set_seed(seed)
self.reset()

def step(self, action):
"""
Interface between environment and agent. Performs one step in the␣

↪→environemnt.
Parameters:

action: int
the index of the respective action in the action array

Returns:
output: (np.array, float, bool)

information provided by the environment about its current␣
↪→state:

(state, reward, done)
"""

check if action tries to take state across the grid boundary
bdry_bool= (self.state[0]==0 and action==3) or (self.state[0]==3 and

action==2) \
or (self.state[1]==0 and action==1) or (self.state[1]==3 and

7

action==0)

environment dynamics (deterministic)

reward=-1 # all trasitions have reward -1

if state is not at the boundary, update the state
if not bdry_bool:

self.state+=self.action_space[action]

done=False
if np.linalg.norm(self.state - self.state_T1) < 1E-14 or

np.linalg.norm(self.state - self.state_T2) < 1E-14:
done=True

self.current_step += 1

return self.state, reward, done

def set_seed(self,seed=0):
"""
Sets the seed of the RNG.

"""
np.random.seed(seed)

def reset(self, random=False):
"""
Resets the environment to its initial values.
Returns:

state: np.array
the initial state of the environment

random: bool
controls whether the initial state is a random state on the␣

↪→grid or
a fixed initials state.

"""

self.current_step = 0

if random:
self.state = np.random.randint(4,size=(2))
while np.linalg.norm(self.state - self.state_T1) < 1E-14 or

np.linalg.norm(self.state - self.state_T2) < 1E-14:
self.state = np.random.randint(4,size=(2))

else:
self.state = np.array([2,2]) #initialize to some state on the grid

return self.state

Let us test the environment to make sure it is implemented properly. Note that we are fixing the seed, so
if you want to see a different output, you should change the value of seed.

8

In []: env=Episodic_GridWorldEnv()

seed=4
env.set_seed(seed)

env.reset()

done=False
j=0
while not done:

state=env.state.copy()

#print(env.actions[state[0],state[1]])

pick a random action
action=np.random.choice(env.actions[state[0],state[1]]) # equiprobable␣

↪→policy from
state s

take an environment step
state_p, reward, done = env.step(action)

print("{0:2d}. s={1}, a={2:}, r={3:2d}, s'={4}".format(j, state,
env.action_space[action], reward, state_p))

j+=1

if done:
print('\nreached terminal state!')
break

C. Windy GridWorld

This is a finite-horizon, i.e. episodic, GridWorld environment. We consider the 10× 7 grid from Example
6.5 in Sutton & Barto.

state space: S = {(m,n)|m = 0, . . . , 9, n = 0, . . . , 6}, where the terminal state is G = (7, 3).
action space: A = {north, south, east, west}; actions trying to take the agent off the grid leave the state

unchanged.
reward space: R = {−1}; r(s, s′, a) = −1 for all states s, s′ ∈ S and allowed actions a ∈ A(s).

In []: class WindyGridWorldEnv():
"""
Gym style environment for GridWorld
Parameters:

n_time_steps: int
Total number of time steps within each episode

seed: int
seed of the RNG (for reproducibility)

"""

def __init__(self, n_time_steps=10, seed=0):
"""
Initialize the environment.

9

"""

self.n_time_steps = n_time_steps

define action space variables
#['north', 'south', 'east', 'west']
self.action_space = [np.array([0,1]), np.array([0,-1]), np.array([1,0]),

np.array([-1,0])]

wind shift
self.wind = np.array([0,0,0,1,1,1,2,2,1,0])

define state space variables
the initial and terminal states
self.state_S = np.array([0,3]) # initial state
self.state_G = np.array([7,3]) # terminal state

set seed
self.set_seed(seed)
self.reset()

def step(self, action):
"""
Interface between environment and agent. Performs one step in the␣

↪→environemnt.
Parameters:

action: int
the index of the respective action in the action array

Returns:
output: (np.array, float, bool)

information provided by the environment about its current␣
↪→state:

(state, reward, done)
"""

check if action tries to take state across the grid boundary
bdry_bool= (self.state[0]==0 and action==3) or (self.state[0]==9 and

action==2) \
or (self.state[1]==0 and action==1) or (self.state[1]==6 and

action==0)

environment dynamics (deterministic)
reward=-1 # all trasitions have reward -1

if not bdry_bool:
check if wind pushes state outside the boundary
if self.state[1]+self.wind[self.state[0]]+self.

↪→action_space[action][1]<=6:
self.state[1]+=self.wind[self.state[0]]

self.state+=self.action_space[action]

check if state is terminal

10

done=False
if np.linalg.norm(self.state - self.state_G) < 1E-14:

done=True

self.current_step += 1

return self.state, reward, done

def set_seed(self,seed=0):
"""
Sets the seed of the RNG.

"""
np.random.seed(seed)

def reset(self, random=False):
"""
Resets the environment to its initial values.
Returns:

state: np.array
the initial state of the environment

random: bool
controls whether the initial state is a random state on the␣

↪→grid or
a fixed initials state.

"""

self.current_step = 0

self.state = self.state_S.copy() #initialize to S

return self.state

Let us test the Windy GridWorld

In []: env=WindyGridWorldEnv()
env.reset()

done=False
j=0
while not done:

pick a random action
action=np.random.choice([0,1,2,3]) # equiprobable policy

take an environment step
state=env.state.copy()
state_p, reward, done = env.step(action)

print("{}. s={}, a={}, r={}, s'={}".format(j, state, env.
↪→action_space[action],

reward, state_p))

11

j+=1

if done:
print('\nreached terminal state!')
break

D. Qubit Environment

We now define an environment for a quantum bit of information (qubit).

1. Basic Definitions

The state of a qubit |ψ〉 ∈ C2 is modeled by a two-dimensional complex-valued vector with unit norm:
〈ψ|ψ〉 :=

√
|ψ1|2 + |ψ2|2 = 1. Every qubit state is uniquely described by two angles θ ∈ [0, π] and ϕ ∈ [0, 2π):

|ψ〉 =
(
ψ1

ψ2

)
= eiα

(
cos θ2

eiϕ sin θ
2

)
(1)

The overall phase α of a single quantum state has no physical meaning. Thus, any qubit state can be
pictured as an arrow on the unit sphere (called the Bloch sphere) with coordinates (θ, φ).

To operate on qubits, we use quantum gates. Quantum gates are represented as unitary transformations
U ∈ U(2), where U(2) is the unitary group. Gates act on qubit states by matrix multiplication to transform
an input state |ψ〉 to the output state |ψ′〉: |ψ′〉 = U |ψ〉. For this problem, we consider four gates

U0 = 1, Ux = exp(−iδtσx/2), Uy = exp(−iδtσy/2), Uz = exp(−iδtσz/2), (2)

where δt is a fixed time step, exp(·) is the matrix exponential, 1 is the identity, and the Pauli matrices are
defined as

1 =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(3)

To determine if a qubit, described by the state |ψ〉, is in a desired target state |ψtarget〉, we compute the
fidelity

F = |〈ψtarget|ψ〉|2 = |(ψtarget)
∗
1ψ1 + (ψtarget)

∗
2ψ2|2, F ∈ [0, 1] (4)

where ∗ stands for complex conjugation. Physically, the fidelity corresponds to the angle between the
arrows representing the qubit state on the Bloch sphere (we want to maximize the fidelity but minimize the
angle between the states).

2. Constructing the Qubit Environment

Now, let us define an RL environment, which contains the laws of physics that govern the dynamics of the
qubit (i.e. the application of the gate operations to the qubit state). Our RL agent will later interact with
this environment to learn how to control the qubit to bring it from an initial state to a prescribed target
state.

We define the RL states s = (θ, ϕ) as an array containing the Bloch sphere angles of the quantum
state. Each step within an episode, the agent can choose to apply one out of the actions, corresponding
to the four gates (1, Ux, Uy, Uz). We use the instantaneous fidelity w.r.t. the target state as a reward:
rt = F = |〈ψ∗|ψ(t)〉|2:

12

state space: S = {(θ, ϕ)|θ ∈ [0, π], ϕ ∈ [0, 2π)}. The terminal states are a region of the Bloch sphere
around the target state |ψtarget〉 = (1, 0)t (i.e. the qubit state we want to prepare): the target qubit state
has the Bloch sphere coordinates sterminal = (0, 0), so the region corresponds to polar cap close to the pole;
the size of the polar cap is set by some small number cap_size=1E-2.

action space: A = {1, Ux, Uy, Uz}. Actions act on RL states as follows: 1. if the current state is
s = (θ, ϕ), we first create the quantums state |ψ(s)〉; 2. we apply the gate Ua corresponding to action a to
the quantum state, and obtain the new quantum state |ψ(s′)〉 = Ua|ψ(s)〉. 3. last, we compute the Bloch
sphere coordinates which define the next state s′ = (θ′, ϕ′), using the Bloch sphere parametrization for qubits
given above. Note that all actions are allowed from every state.

reward space: R = [0, 1]. We use the fidelity between the next state s′ and the terminal state sterminal

as a reward at every episode step:

r(s, s′, a) = F = |〈ψtarget|Ua|ψ(s)〉|2 = |〈ψtarget|ψ(s′)〉|2

for all states s, s′ ∈ S and actions a ∈ A.

In []: class QubitEnv():
"""
Gym style environment for RL. You may also inherit the class structure from␣

↪→OpenAI
Gym.

Parameters:
n_time_steps: int

Total number of time steps within each episode
seed: int

seed of the RNG (for reproducibility)
"""

def __init__(self, n_time_steps, seed):
"""
Initialize the environment.

"""

self.n_time_steps = n_time_steps

define action space variables
delta_t = 2*np.pi/n_time_steps # set a value for the time step
define Pauli matrices
Id =np.array([[1.0,0.0], [0.0 ,+1.0]])
sigma_x=np.array([[0.0,1.0], [1.0 , 0.0]])
sigma_y=np.array([[0.0,-1.0j], [1.0j, 0.0]])
sigma_z=np.array([[1.0,0.0], [0.0 ,-1.0]])

self.action_space=[]
for generator in [Id, sigma_x, sigma_y, sigma_z]:

self.action_space.append(expm(-1j*delta_t*generator))

define state space variables
self.S_terminal = np.array([0.0,0.0])
self.psi_terminal = self.RL_to_qubit_state(self.S_terminal)
self.cap_size = 1E-2

13

set seed
self.set_seed(seed)
self.reset()

def step(self, action):
"""
Interface between environment and agent. Performs one step in the␣

↪→environemnt.
Parameters:

action: int
the index of the respective action in the action array

Returns:
output: (object, float, bool)

information provided by the environment about its current␣
↪→state:

(state, reward, done)
"""

apply gate to quantum state
self.psi = self.action_space[action].dot(self.psi)

compute RL state
self.state = self.qubit_to_RL_state(self.psi)

compute reward
reward = np.abs(self.psi_terminal.conj().dot(self.psi))**2

check if state is terminal
done=False
if np.abs(reward - 1.0) < self.cap_size:

done=True

return self.state, reward, done

def set_seed(self,seed=0):
"""
Sets the seed of the RNG.

"""
np.random.seed(seed)

def reset(self, random=True):
"""
Resets the environment to its initial values.
Returns:

state: object
the initial state of the environment

random: bool

14

controls whether the initial state is a random state on the␣
↪→sphere

or a fixed initial state.
"""

if random:
theta = np.pi*np.random.uniform(0.0,1.0)
phi = 2*np.pi*np.random.uniform(0.0,1.0)

else:
start from south pole of Bloch sphere
theta=np.pi
phi=0.0

self.state=np.array([theta,phi])
self.psi=self.RL_to_qubit_state(self.state)

return self.state

def render(self):
"""
Plots the state of the environment. For visulization purposes only.

"""
pass

def RL_to_qubit_state(self,s):
"""
Take as input the RL state s, and return the quantum state |psi>
"""
theta, phi = s
psi = np.array([np.cos(0.5*theta), np.exp(1j*phi)*np.sin(0.5*theta)])
return psi

def qubit_to_RL_state(self,psi):
"""
Take as input the RL state s, and return the quantum state |psi>
"""
take away unphysical global phase
alpha = np.angle(psi[0])
psi_new = np.exp(-1j*alpha) * psi

find Bloch sphere angles
theta = 2.0*np.arccos(psi_new[0]).real
phi = np.angle(psi_new[1])

return np.array([theta, phi])

In []: np.set_printoptions(suppress=True,precision=2)

n_time_steps = 100
seed=6

env=QubitEnv(n_time_steps,seed)

15

env.reset(random=True)

done=False
j=0
while not done:

pick a random action
action=np.random.choice([0,1,2,3]) # equiprobable policy

take an environment step
state=env.state.copy()
state_p, reward, done = env.step(action)

print("{}. s={}, a={}, r={}, s'={}\n".format(j, state, action, np.
↪→round(reward,6),

state_p))

j+=1

if done:
print('\nreached terminal state!')
break

E. OpenAI Gym Environments

Next, we shall look at some OpenAI anvironments: Atari video games, the Cart Pole problem, and the
Mountain Car problem.

In []: import matplotlib.pyplot as plt
%matplotlib inline
from IPython import display

import gym
from IPython import display
import matplotlib
import matplotlib.pyplot as plt
%matplotlib inline

#env = gym.make('BreakoutDeterministic-v4')
#env = gym.make('SpaceInvaders-v0')

#env = gym.make('CartPole-v1')
env = gym.make('MountainCar-v0')

env.reset()
img = plt.imshow(env.render(mode='rgb_array')) # only call this once

n_time_steps=100
for _ in range(n_time_steps):

plot frame
img.set_data(env.render(mode='rgb_array')) # just update the data

16

display.display(plt.gcf())
display.clear_output(wait=True)
choose action
action = env.action_space.sample()
take action
frame, reward, is_done, _ = env.step(action)

In []: print(frame.shape, reward, is_done, _)

In []: print(env.__dir__())

	Reinforcement Learning Course: WiSe 2020/21
	Reinforcement Learning (RL) Environments
	GridWorld
	GridWorld 2
	Windy GridWorld
	Qubit Environment
	Basic Definitions
	Constructing the Qubit Environment

	OpenAI Gym Environments

	References

