
Reinforcement Learning Course: WiSe 2020/21

Marin Bukov
Faculty of Physics, Sofia University, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria

(Dated: November 14, 2020)

I. MONTE CARLO (MC) METHODS IN REINFORCEMENT LEARNING

In this notebook, we study tabular model-free RL using MC methods. Recall that we introduced MC
sampling in Notebook 1, and here we shall make use of some of the sampling techniques we discussed there,

In particular, in this Notebook, we shall code up simple routines for: 1. first-visit MC prediction for value
function estimation; 2. MC with exploring starts (ES) for policy optimization.

We follow closely the discussion and pseudocodes from Sutton & Barto, Chapter 5.
Because the tabular MC methods in RL we discussed in class are defined only for episodic tasks, below

we shall use the Episodic_GridWorldEnv we created in Notebook 2.

In [9]: import numpy as np

import import_ipynb
from Notebook_2_RL_environments import Episodic_GridWorldEnv # import␣

↪→environment,
notebooks must be in same directory

Let us begin by initializing the environment.
Apart from fixing the seed for reproducibility, episodic environments also require the argument

n_time_steps which sets an upper bound on the number of time steps per episode.

In [2]: n_time_steps=100 # number of steps in a single episode
seed=0 # set seed of rng (for reproducibility of the results)

discount factor
gamma = 1.0

create environment class
env=Episodic_GridWorldEnv(n_time_steps=n_time_steps,seed=seed)

Our first taks is to write a routine called policy_rollout which uses a policy pi to generate RL tranjec-
tories

τ = (S0, A0, R1, S1A1, R2, . . . , Sterminal)

Generating trajectories is often called a rollout in RL.
Note that if we encounter a terminal state Sterminal, then we should stop the rollout.

In [3]: def policy_rollout(pi, States, Actions, Rewards):
"""
pi: np.ndarray of dimension (m,n,a).

policy to generate trajectory from
States: list

append here the encountered states in
Actions: list

append here the encountered actions
Rewards: list

append here the encountered rewards

2

"""

while env.current_step < env.n_time_steps:

read off state
state=env.state.copy()

pick a random action
action=np.random.choice([0,1,2,3], p=pi[state[0],state[1],:])

take an environment step
state_prime, reward, done = env.step(action)

store trajectory
States.append(state)
Actions.append(action)
Rewards.append(reward)

check if state is terminal
if done:

break

return States, Actions, Rewards

A. First-visit MC prediction for estimating V ≈ Vπ

We are now ready to code up the first-visit MC prediction algorithm to approximating the vaue function
V ≈ Vπ.

1. initialize the table for the approximate value function V, and the empty list Returns (see pseudicode
in textbook)

2. For each episode:

• re-set the environment to a random initial state, cf. env.reset(random=True).
• roll out the policy to sample a trajectory
• loop backwards over the trajectory to evaluate the return G (you need to do extra work to
guarantee the first-visit constraint, see pseudocode)

As usual, it is considered a better practice to write the routine itself in a separate function first_visit_MC.

In [4]: def first_visit_MC(N_trajectories, pi):
"""
N_trajectories: int

Number of trajectories to be sampled.
pi: np.ndarray of dimension (m,n,a).

policy to generate trajectories from.

"""

initialize variables
V = np.zeros((4,4),) # (m,n)
Returns = [[[] for j in range(4)] for i in range(4)]

loop over N_trajectories to sample trajectories

3

for episode in range(N_trajectories):

set env to a random initial state
env.reset(random=True)

generate episode using pi
States = []
Actions = []
Rewards = []

States,Actions,Rewards = policy_rollout(pi, States,Actions,Rewards)

compute integer representation
States_ints = [state[1]*4+state[0] for state in States]

#print('\nfinished sampling trajectory {} with {}
steps.'.format(n,env.current_step))

evaluate trajectory
G = 0.0
for t_rev in range(env.current_step-1,-1,-1):

read off state
state = States[t_rev]
m,n = state

update G
G*=gamma
G+=Rewards[t_rev]

if np.sum([np.all(np.linalg.norm(state-S)<1E-13) for S in States[:
↪→t_rev]]) <

1:
append returns
Returns[m][n].append(G)
compute MC average
V[m,n]=np.mean(Returns[m][n])

return V

Now, let us test the routine

1. using the equiprobable policy

π(a|s) = 1

|A(s)|

Note that A(s) depends on the states s; in parciular, at the boundary the action space is smaller than in
the bulk.

2. define your own policy – be creative!

To do this, we call we print the resulting approximate value function V.

3. In both cases, we can set the number of sampled trajectories to N_trajectories=10000. How does
the result change if we use fewer / more samples?

4

4. The result we got for the equiprobable random policy differs from the k → ∞ iteration shown in Fig
4.1 (Sutton & Barto). What is this difference due to? Hint: did we implement the same boundary
conditions as in the book? Why does the definition of the action space play a role here?

In [5]: # re-set the seed (reproducibility)
np.random.seed(seed)

define equiprobable policy to be evaluated
loop over the states to define equiprobable policy: \
the loop is needed because the action space is smaller at the boundary than in␣

↪→the
bulk
pi = np.zeros((4,4,4),) # (m,n,a)
for m in range(4):

for n in range(4):
available_actions=env.actions[m,n]
pi[m,n,available_actions]=1.0/len(available_actions) # equiprobable; try␣

↪→out
something else!

enable this policy to implement the uniform boundary condition and reproduce␣
↪→result

from boo
pi[...,:] = 0.25

number of trajectories to sample for the value function estimate
N_trajectories = 10000

use first-visit MC to learn an estimate for the value function $V\approx v_\pi$
V = first_visit_MC(N_trajectories, pi)

print value function estimates
np.round(V.T, 0)

[breakable, size=fbox, boxrule=.5pt, pad at break*=1mm, opacityfill=0][5]:
array([[0., -11., -15., -16.],

[-11., -14., -16., -15.],
[-15., -16., -14., -11.],
[-16., -15., -11., 0.]])

B. Monte Carlo Exploring Starts (ES), for estimating π ≈ π∗

Our second task is to code an algorithm which allows us to improve the policy using MC. In particular,
here we focus in Monte Carlo with Exploring Starts (ES) to learn an approximation to the optimal policy
π ≈ π∗ .

Use the pseudocode from Chapter 5.3 in Sutton & Barto to write the MC_Exploring_Starts() routine.
This routine is similar (but somewhat different) to the first_visit_MC() function we wrote above. If you
encouner difficulties, we recommend that you first extend first_visit_MC() to action-value, or Q-functions,
and then return to the problem below.

In the function below, we also allow to input an initial policy pi externally, so we can test the behavior
starting from different policy afterwards. Of course, the routing should produce an optimal policy irrespective
of the initial policy pi.

In [6]: def MC_Exploring_Starts(N_trajectories, pi):

5

initialize variables
Q = np.zeros((4,4,4),) # (m,n,a)
Returns = [[[[] for k in range(4)] for j in range(4)] for i in range(4)] #␣

↪→(m,n,a)

loop over N_trajectories to sample trajectories
for episode in range(N_trajectories):

implement Exploring Starts
choose random (state,action)-pair with equal probability
env.reset(random=True)
state=env.state.copy()

action = np.random.choice(env.actions[state[0],state[1]])

take initial state-action pair
_, reward, done = env.step(action)

generate episode using pi

store initial data
States = [state]
Actions = [action]
Rewards = [reward]

roll out policy
if not done:

States,Actions,Rewards = policy_rollout(pi, States,Actions,Rewards)

evaluate trajectory
G = 0.0
for t_rev in range(env.current_step-1,-1,-1):

read off state
state = States[t_rev]
m,n = state

action = Actions[t_rev]

update G
G*=gamma
G+=Rewards[t_rev]

check if state action pair is not present in te trajectory (there␣
↪→likely

is a better way to do this)
pair_absent_bool = np.sum([np.linalg.norm(state-S)<1E-13 *␣

↪→(action==A) for
S,A in zip(States[:t_rev],Actions[:t_rev])]) < 1

if pair_absent_bool: # (S,A) pair not present in trajectory
append returns
Returns[m][n][action].append(G)
compute MC average
Q[m,n,action]=np.mean(Returns[m][n][action])

6

improve policy
pi[m,n,:] = 0.0
pi[m,n,np.argmax(Q[m,n,:])] = 1.0

return Q, pi

Now, let us test the MC_Exploring_Starts routine.

1. You may start from any initial policy, including the equiprobable policy, or a random policy. Do you
observa any difference? How does this change if we use fewer/more trajectories?

2. Visualize the optimal q∗ function Q_star. Wxtract the correspondig greedy policy from it; does it
agree with the optimal policy pi_star?

3. Does the optimal policy depend on the boundary condition? Hint: to answer this, you’d have to modify
the available action space in the environment.

In [8]: # re-set the seed (reproducibility)
np.random.seed(seed)

define equiprobable policy to be evaluated
loop over the states to define equiprobable policy: \
the loop is needed because the action space is smaller at the boundary than in␣

↪→the
bulk
pi = np.zeros((4,4,4),) # (m,n,a)
for m in range(4):

for n in range(4):
available_actions=env.actions[m,n]
pi[m,n,available_actions]=1.0/len(available_actions) # equiprobable; try␣

↪→out
something else!

define a random initial policy (has to be normalized to a probability distr)
pi=np.random.uniform(low=0.0,high=1.0, size=(4,4,4)) # random initial policy
norm=np.sum(pi,axis=2)
pi=np.einsum('ijk,ij->ijk', pi,1.0/norm)

MC step
N_trajectories = 10000

Q_star, pi_star = MC_Exploring_Starts(N_trajectories, pi)

greedy policy from Q
print(np.round(np.max(Q_star,axis=2).T,0))

[[0. -1. -2. -3.]
[-1. -2. -3. -2.]
[-2. -3. -2. -1.]
[-4. -2. -1. 0.]]

7

C. On-policy first-visit MC control (for ε-soft policies), for estimating π ≈ π∗

We can remove the exploring starts requirement, by using an ε-soft policy. Modify the function
MC_Exploring_Starts() to a function MC_control() which implements this. The pseudocode is available
in Sutton & Barto, Chapter 5.4.

In []:

	Reinforcement Learning Course: WiSe 2020/21
	Monte Carlo (MC) Methods in Reinforcement Learning
	First-visit MC prediction for estimating V\approx V_\pi
	Monte Carlo Exploring Starts (ES), for estimating \pi\approx\pi_\ast
	On-policy first-visit MC control (for \varepsilon-soft policies), for estimating \pi\approx\pi_\ast

