
Reinforcement Learning Course: WiSe 2020/21

Marin Bukov
Faculty of Physics, Sofia University, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria

(Dated: November 22, 2020)

I. TEMPORAL DIFFERENCE LEARNING

In this notebook, we study in practice Temporal Difference (TD) methods. We follow closely the discussion
in Sutton & Barto, Chapter 6.

Like Monte Carlo methods, TD methods do not require knowledge of the transition probabilities
p(s′, r|s, a), i.e. they are model-free; TD methods learn directly from experience. Like Dynamic Programming
methods, TD methods update incrementally the value function, and can also be used for inifinite-horizeon
tasks.

Below, you will implement:

1. Policy Evaluation using TD(0),

2. On-Policy Control: SARSA
3. Off-Policy Control: Q-Learning

As an example, we use the WindyGridWorld environment defined in Notebook 2.

In [2]: import numpy as np
import import_ipynb
from Notebook_2_RL_environments import WindyGridWorldEnv # import environment,␣

↪→notebooks
must be in same directory

In [2]: # set seed of rng (for reproducibility of the results)
seed=0
np.random.seed(seed)

create environment class
env=WindyGridWorldEnv(seed=seed)

A. Policy Evaluation

First, we implement Policy Evaluation using TD learning.

In [11]: def policy_evaluation(pi, N_episodes, alpha, gamma, verbose=True):
"""
pi: np.ndarray

policy to be evaluated.
N_episodes: int

number of training episodes.
alpha: double

learning rate or step-size parameter. Should be in the interval [0,1].
gamma: double

discount factor. Should be in the interval [0,1].
verbose: bool

whether or not to input progress.

"""

2

initialize value function V
V = np.zeros((10,7),)

policy evaluation
for episode in range(N_episodes):

reset environment
env.reset()

loop over the steps in an episode
done=False
while (not done):

pick a random action
S=env.state.copy()
A=np.random.choice([0,1,2,3], p=pi[S[0],S[1],:])

take an environment step
S_p, R, done = env.step(A)

update value function
V[S[0],S[1]] += alpha*(R + gamma*V[S_p[0],S_p[1]] - V[S[0],S[1]])

if episode%10==0 and verbose:
print('finished episode {0:d}.'.format(episode))

return V

Define an equiprobably policy and evaluate it using TD learning. Use α = 0.5, γ = 0.9, and
N_episodes=100.

1. What happens if you change the value for the discount factor γ? Can you explain your observations?
2. Does the result depend on the number of episodes used? Why?
3. Try to evaluate the policy which deterministically takes the action right. What can go wrong here?

Can you come up with a way to fix the issue you observe?

In [12]: # learning rate
alpha = 0.5

discount factor
gamma = 0.9

number of episodes to collect data from
N_episodes=100

define equiprobable policy
pi_equiprob=0.25*np.ones((10,7,4))

evaluate the valur function for the equiproably policy
V_equiprob = policy_evaluation(pi_equiprob, N_episodes, alpha, gamma)

print value function
np.round(np.flipud(V_equiprob.T),0)

finished episode 0.
finished episode 10.
finished episode 20.

3

finished episode 30.
finished episode 40.
finished episode 50.
finished episode 60.
finished episode 70.
finished episode 80.
finished episode 90.

[breakable, size=fbox, boxrule=.5pt, pad at break*=1mm, opacityfill=0][12]:
array([[-10., -10., -10., -10., -10., -10., -10., -10., -10., -10.],

[-10., -10., -10., -10., -10., -10., -10., -10., -10., -10.],
[-10., -10., -10., -10., -10., -10., -10., -10., -10., -9.],
[-10., -10., -10., -10., -10., -10., -10., 0., -10., -9.],
[-10., -10., -10., -10., -10., -10., 0., -8., -5., -9.],
[-10., -10., -10., -10., -10., 0., 0., -10., -10., -9.],
[-10., -10., -10., -10., 0., 0., 0., 0., -7., -9.]])

B. SARSA

We now turn to policy improvement, and implement the SARSA algorithm. SARSA is an on-policy
algorithm, i.e. the policy being improved is the same policy which generates the data. The algorithm makes
use of generalized policy iteration to find an approximation to the optimal Q-function using experience
(i.e. from data).

SARSA requires us to be able to take actions according to an ε-greedy policy. Therefore, your first
task is to implement a function take_eps_greedy_action(Qs,eps,avail_actions) which takes an action
according to the ε-greedy policy w.r.t. the Q-function Q(s,:) for some fixed state s. For simiplicity, we
assume that all actions are available from every state (see definition of WindyGridWorld environment).

Once we have take_eps_greedy_action, we can move on to implement the SARSA(N_episodes, alpha,
gamma, eps) routine.

In [5]: def take_eps_greedy_action(Qs,eps,avail_actions=np.array([0,1,2,3])):
"""
Qs: np.ndarray

the Q(s,:) values for a fixed state, over all available actions from␣
↪→that state.

eps: double
small number to define the eps-greedy policy.

avail_actions: np.ndarray
an array containing all allowed actions from the state s.
For the WindyGridWorld environment, these are always all four actions.

"""

compute greedy action
a = np.argmax(Qs)

draw a random number in [0,1]
delta=np.random.uniform()

take a non=greedy action with probability eps/|A|
if delta < eps/avail_actions.shape[0]:

a = np.random.choice(avail_actions[np.arange(len(avail_actions)) != a])

return a

4

In [6]: def SARSA(N_episodes, alpha, gamma, eps):
"""
N_episodes: int

number of training episodes
alpha: double

learning rate or step-size parameter. Should be in the interval [0,1].
gamma: double

discount factor. Should be in the interval [0,1].
eps: double

the eps-greedy policy paramter. Control exploration. Should be in the␣
↪→interval

[0,1].
"""

initialize Q function
Q = np.zeros((10,7,4),) # (10,7)-grid of 4 actions

policy evaluation
for episode in range(N_episodes):

reset environment and compute initial state
S=env.reset().copy()
take first action using eps-greedy policy
A=take_eps_greedy_action(Q[S[0],S[1],:],eps)

loop over the timesteps in the episode
done=False
while not done:

take an environment step
S_p, R, done = env.step(A)

choose A_p
A_p=take_eps_greedy_action(Q[S_p[0],S_p[1],:],eps)

update value function
Q[S[0],S[1],A] += alpha*(R + gamma*Q[S_p[0],S_p[1],A_p] -␣

↪→Q[S[0],S[1],A])

update states
S=S_p.copy()
A=A_p.copy()

return Q

Now that we implemented SARSA, we can evaluate the optimal q∗(s, a) and v∗(s) functions for a fixed
value of ε = 0.1.

• What is the role of the parameters N_episodes when it comes to the convergence speed?
• Print the value function corresponding to Q_SARSA.
• Extract the optimal policy from Q_SARSA.

Use your code now to gain intuition about how the algorithm behahaves:

• How do the results change if you decrease the value of eps?
• How do the results change if you increase/decrease the step size paramter alpha?

5

In [7]: # learning rate
alpha = 0.5

discount factor
gamma = 1.0

epsilon: small positive number used in the definition of the epsilon-greedy␣
↪→policy

eps = 0.1

number of episodes to collect data from
N_episodes=1000

use SARSA to compute the optimal Q function
Q_SARSA=SARSA(N_episodes, alpha, gamma, eps)

extract and plot the corresponding value function
V_SARSA=np.max(Q_SARSA,axis=2)
np.round(np.flipud(V_SARSA.T),0)

compute and print the optimal policy

[breakable, size=fbox, boxrule=.5pt, pad at break*=1mm, opacityfill=0][7]:
array([[-16., -16., -14., -13., -11., -10., -9., -8., -7., -6.],

[-16., -16., -14., -12., -13., -11., -10., -10., -8., -5.],
[-17., -16., -15., -14., -12., -12., -11., -7., -8., -4.],
[-15., -15., -14., -13., -13., -11., -10., 0., -7., -3.],
[-17., -16., -15., -14., -12., -11., 0., -1., -1., -2.],
[-16., -15., -14., -13., -12., 0., 0., -2., -2., -4.],
[-15., -14., -13., -13., 0., 0., 0., 0., -2., -4.]])

C. Q-Learning

Q-Learning is an off-policy algorithm, i.e. the policy being improved can be different from the behavior
policy which generates the data. Like SARSA, Q-Learning makes use of generalized policy iteration to find
an approximation to the optimal Q-function using experience (i.e. from data).

The Q-Learning algorithm forms the basics of modern Deep RL studies; the off-policy character allows to
learn from old data which makes it particularly suitable for data-driven deep learning approaches.

As with SARSA, we will make use of the routine take_eps_greedy_action defined above.

In [8]: def Q_Learning(N_episodes, alpha, gamma, eps):
"""
N_episodes: int

number of training episodes
alpha: double

learning rate or step-size parameter. Should be in the interval [0,1].
gamma: double

discount factor. Should be in the interval [0,1].
eps: double

the eps-greedy policy paramter. Control exploration. Should be in the␣
↪→interval

[0,1].
"""

initialize Q function
Q = np.zeros((10,7,4),) # (10,7)-grid of 4 actions

6

policy evaluation
for episode in range(N_episodes):

reset environment and compute initial state
S=env.reset().copy()

loop over the timesteps in the episode
done=False
while not done:

choose action
A=take_eps_greedy_action(Q[S[0],S[1],:],eps)

take an environment step
S_p, R, done = env.step(A)

update value function
Q[S[0],S[1],A] += alpha*(R + gamma*np.max(Q[S_p[0],S_p[1],:]) -

Q[S[0],S[1],A])

update states
S=S_p.copy()

return Q

Like with SARSA, we’d like to first evaluate the optimal q∗(s, a) and v∗(s) functions for a fixed value of
ε = 0.1.

• What is the role of the parameters N_episodes when it comes to the convergence speed?
• Print the value function V_QL corresponding to Q_QL.
• Extract the optimal policy from Q_QL.
• Now use the policy_evaluation routine to evaluate the optimal policy and visualize its value function
V; What is the relation between the value function V, and the value function V_QL obtained from Q_QL?

Use your code now to gain intuition about how the algorithm behahaves:

• How do the results change if you decrease the value of eps?
• How do the results change if you increase/decrease the step size paramter alpha?

In [13]: # learning rate
alpha = 0.5

discount factor
gamma = 1.0

epsilon: small positive number used in the definition of the epsilon-greedy␣
↪→policy

eps = 0.1

number of episodes to collect data from
N_episodes=1000

use Q-Learning to compute the optimal Q function
Q_QL=Q_Learning(N_episodes, alpha, gamma, eps)

7

extract and plot the corresponding value function
V_QL=np.max(Q_QL,axis=2)
np.round(np.flipud(V_QL.T),0)

compute and print the optimal policy
pi_QL=np.zeros((10,7,4))

greedy policy associated with Q function
amax=np.argmax(Q_QL,axis=2)
for m in range(10):

for n in range(7):
pi_QL[m,n,amax[m,n]]=1

now use the policy_evaluation routine to evaluate the optimal policy and␣
↪→visualize its

value function.
V=policy_evaluation(pi_QL, N_episodes, alpha, gamma, verbose=False)
np.round(np.flipud(V.T),0)

[breakable, size=fbox, boxrule=.5pt, pad at break*=1mm, opacityfill=0][13]:
array([[0., 0., 0., 0., 0., 0., -9., -8., -7., -6.],

[0., 0., 0., 0., 0., -10., 0., 0., 0., -5.],
[0., 0., 0., 0., -11., 0., 0., 0., 0., -4.],
[-15., -14., -13., -12., 0., 0., 0., 0., 0., -3.],
[0., 0., 0., 0., 0., 0., 0., 0., -1., -2.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])

In []:

	Reinforcement Learning Course: WiSe 2020/21
	Temporal Difference Learning
	Policy Evaluation
	SARSA
	Q-Learning

