
Reinforcement Learning Course: WiSe 2020/21

Marin Bukov
Faculty of Physics, Sofia University, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria

(Dated: November 29, 2020)

I. GRADIENT DESCENT AND ITS GENERALIZATIONS

A. Learning Goal

The goal of this notebook is to gain intuition for various gradient descent methods by visualizing and
applying these methods to some simple two-dimensional surfaces. Methods studied include ordinary gradient
descent, gradient descent with momentum, NAG, RMSProp, and ADAM. This notebook follows Notebook
2 and Section IV from the ML Review by Mehta et al.

B. Overview

In this notebook, we will visualize what different gradient descent methods are doing using some simple
surfaces. From the onset, we emphasize that doing gradient descent on the surfaces is different from per-
forming gradient descent on a loss function in Machine Learning (ML). The reason is that in ML not only do
we want to find good minima, we want to find good minima that generalize well to new data. Despite this
crucial difference, we can still build intuition about gradient descent methods by applying them to simple
surfaces (for a useful blog post, see here).

C. Surfaces

We will consider three simple surfaces:

• a quadratic minimum of the form

z(x, y) = ax2 + by2,

• a saddle-point of the form

z(x, y) = ax2 − by2,

• and Beale’s Function:

z(x, y) = (1.5− x+ xy)2 + (2.25− x+ xy2)2 + (2.625− x+ xy3)2.

Additionally, you may explore

• Rosenbrock’s Function which has a global minimum at (x,y) = (1,1):

z(x, y) = (1− x)2 + 100(y − x2)2,

• and Himmelblau’s Function which has four degenerate minima and a local maximum between them:

http://physics.bu.edu/~pankajm/MLnotebooks.html
http://ruder.io/optimizing-gradient-descent/
https://en.wikipedia.org/wiki/Test_functions_for_optimization
https://en.wikipedia.org/wiki/Test_functions_for_optimization
https://en.wikipedia.org/wiki/Test_functions_for_optimization
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z(x, y) = (x2 + y − 11)2 + (x+ y2 − 7)2,

The last three are non-convex functions often used to test optimization problems. These surfaces can be
plotted using the cells below.

In [1]: #This cell sets up basic plotting functions we will use to visualize the gradient
descent routines.

#Make plots interactive
%matplotlib notebook

#Make plots static
#%matplotlib inline

#Make 3D plots
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import cm
from IPython.display import HTML
from matplotlib.colors import LogNorm

#Import Numpy
import numpy as np

#Define function for plotting

def plot_surface(x, y, z, azim=-60, elev=40, dist=10, cmap="jet"):

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
plot_args = {'rstride': 1, 'cstride': 1, 'cmap':cmap,

'linewidth': 20, 'antialiased': True,
'vmin': -2, 'vmax': 2}

ax.plot_surface(x, y, z, **plot_args)
ax.view_init(azim=azim, elev=elev)
ax.dist=dist
ax.set_xlim(-1, 1)
ax.set_ylim(-1, 1)
ax.set_zlim(-2, 2)

plt.xticks([-1, -0.5, 0, 0.5, 1], ["-1", "-1/2", "0", "1/2", "1"])
plt.yticks([-1, -0.5, 0, 0.5, 1], ["-1", "-1/2", "0", "1/2", "1"])
ax.set_zticks([-2, -1, 0, 1, 2])
ax.set_zticklabels(["-2", "-1", "0", "1", "2"])

ax.set_xlabel("x", fontsize=18)
ax.set_ylabel("y", fontsize=18)
ax.set_zlabel("z", fontsize=18)
return fig, ax;

def overlay_trajectory_quiver(ax,obj_func,trajectory, color='k'):

xs=trajectory[:,0]
ys=trajectory[:,1]
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zs=obj_func(xs,ys)
ax.quiver(xs[:-1], ys[:-1], zs[:-1], xs[1:]-xs[:-1],

ys[1:]-ys[:-1],zs[1:]-zs[:-1],color=color,arrow_length_ratio=0.3)

return ax;

def overlay_trajectory(ax,obj_func,trajectory,label,color='k'):
xs=trajectory[:,0]
ys=trajectory[:,1]
zs=obj_func(xs,ys)
ax.plot(xs,ys,zs, color, label=label)

return ax;

def overlay_trajectory_contour(ax,trajectory, label,color='k',lw=2,␣
↪→plot_marker=False):

xs=trajectory[:,0]
ys=trajectory[:,1]
ax.plot(xs,ys, color, label=label,lw=lw)
if plot_marker:

ax.plot(xs[-1],ys[-1], color+'>', markersize=10)
return ax;

In [2]: #DEFINE SURFACES WE WILL WORK WITH

#Define monkey saddle and gradient
def monkey_saddle(x,y):

return x**3 - 3*x*y**2

def grad_monkey_saddle(params):
x=params[0]
y=params[1]
grad_x= 3*x**2-3*y**2
grad_y= -6*x*y
return [grad_x,grad_y]

#Define saddle surface

def saddle_surface(x,y,a=1,b=1):
return a*x**2-b*y**2

def grad_saddle_surface(params,a=1,b=1):
x=params[0]
y=params[1]
grad_x= a*x
grad_y= -1*b*y
return [grad_x,grad_y]

# Define minima_surface

def minima_surface(x,y,a=1,b=1):
return a*x**2+b*y**2-1

def grad_minima_surface(params,a=1,b=1):
x=params[0]
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y=params[1]
grad_x= 2*a*x
grad_y= 2*b*y
return [grad_x,grad_y]

def beales_function(x,y):
return (1.5-x+x*y)**2 + (2.25-x+x*y**2)**2 + (2.625-x+x*y**3)**2

def grad_beales_function(params):
x=params[0]
y=params[1]
grad_x=2*(1.5-x+x*y)*(-1+y)+2*(2.25-x+x*y**2)*(-1+y**2)+2*(2.

↪→625-x+x*y**3)*(-1+y**3)
grad_y=2*(1.5-x+x*y)*x+4*(2.25-x+x*y**2)*x*y+6*(2.625-x+x*y**3)*x*y**2
return [grad_x,grad_y]

def contour_beales_function():
#plot beales function
x, y = np.meshgrid(np.arange(-4.5, 4.5, 0.1), np.arange(-4.5, 4.5, 0.1))
fig, ax = plt.subplots(figsize=(10, 6))
z=beales_function(x,y)
cax = ax.contour(x, y, z, levels=np.logspace(0, 5, 35), norm=LogNorm(),

cmap="RdYlBu_r")
ax.plot(3,0.5, 'r*', markersize=18)

ax.set_xlabel('$x$')
ax.set_ylabel('$y$')

ax.set_xlim((-4.5, 4.5))
ax.set_ylim((-4.5, 4.5))

return fig,ax

#Make plots of surfaces
plt.close() # closes previous plots
x, y = np.mgrid[-1:1:31j, -1:1:31j]

In [3]: fig1,ax1=plot_surface(x,y,monkey_saddle(x,y))
plt.show()

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

In [4]: fig2,ax2=plot_surface(x,y,saddle_surface(x,y))
plt.show()

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>
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In [6]: fig3,ax3=plot_surface(x,y,minima_surface(x,y,5),0)
plt.show()

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

In [7]: #Make plots static
%matplotlib inline

#Contour plot of Beale's Function
fig4,ax4 = contour_beales_function()
plt.show()

D. Gradient Descent with and without Momentum

We want to visualize various gradient descent algorithms used in machine learning. We will be especially
interested in trying to understand how various hyperparameters – especially the learning rate – affect our
performance. Here, we confine ourselves primarily to looking at the performance in the absence of noise.
However, we encourage the reader to experiment with playing with the noise strength below
and seeing what differences introducing stochasticity makes.

Throughout, we denote the parameters by θ and the energy function we are trying to minimize by E(θ).

1. Gradient Descent

We start by considering a simple gradient descent method. In this method, we will take steps in the
direction of the local gradient. Given some parameters θ, we adjust the parameters at each iteration so that
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θt+1 = θt − αt∇θE(θ),

where we have introduced the learning rate/step size αt that controls how large a step we take. In general,
the algorithm is extremely sensitive to the choice of αt. If αt is too large, then one can wildly oscillate
around a minimum, and miss important structure at small scales. This problem is amplified if our gradient
computations are noisy and inexact (as is often the case in machine learning applications). If αt is too small,
then the learning/minimization procedure becomes extremely slow. This raises the natural question: What
sets the natural scale for the learning rate and how can we adaptively choose it?

2. Gradient Descent with Momentum

One problem with gradient descent is that it has no memory of where the “ball rolling down the hill”
comes from. This can be an issue when there are many shallow minima in our landscape. If we make an
analogy with a ball rolling down a hill, the lack of memory is equivalent to having no inertia or momentum
(i.e. completely overdamped dynamics). Without momentum, the ball has no kinetic energy and cannot
climb out of shallow minima.

Momentum becomes especially important when we start thinking about stochastic gradient descent with
noisy, stochastic estimates of the gradient. In this case, we should remember where we were coming from
and not react drastically to each new update.

Inspired by this, we can add a memory or momentum term to the stochastic gradient descent term above:

ρt = γρt−1 + αt∇θE(θt), θt+1 = θt − ρt,

with 0 ≤ γ < 1 called the momentum parameter. When γ = 0, this reduces to ordinary gradient descent,
and increasing γ increases the inertial contribution to the gradient. From the equations above, we can see
that typical memory lifetimes of the gradient is given by (1 − γ)−1. For γ = 0 as in gradient descent, the
lifetime is just one step. For γ = 0.9, we typically remember a gradient for ten steps. We will call this
gradient descent with classical momentum or GDM for short.

A final widely used variant of gradient descent with momentum is called the Nesterov Accelerated Gradient
(NAG). In NAG, rather than calculating the gradient at the current position, one calculates the gradient at
the position momentum will carry us to, at time t+ 1, namely, θt − γρt−1. Thus, the update becomes

ρt = γρt−1 + αt∇θE(θt − γρt−1)θt+1 = θt − ρt

In the following, you have to write three routines, one for gd, gd_with_mom, and NAG.

In [16]: #####################################################################
# simple Gradient Descent, Gradient Descent with Momentum, and NAG. #
#####################################################################

"""
grad: function object

function which computes the gradient at a position [x,y] of the surface.
init: list

initial parameters [x,y] to start the descent from.
n_epochs: int

number of iterations for the algorithm. Default is 1000.
alpha: double

learning rate / stepsize parameter. Default is 10**-4.
gamma: double (0.0 <= gamma < 1.0)

momentum parameter:
noise_strength: double

defines overall scale of noise, as in `noise_strength *
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np.random.randn(params.size)`. Default is 0.0.

"""

def GD(grad, init, N_steps=1000, alpha=1E-4, noise_strength=0):
params = np.array(init)
param_traj = np.zeros([N_steps+1,2])
param_traj[0] = init
rho = 0.0
for j in range(N_steps):

noise = noise_strength*np.random.randn(params.size)
rho = alpha*(np.array(grad(params)) + noise)
params = params - rho
param_traj[j+1] = params

return param_traj

def GDM(grad, init, N_steps=5000, alpha=1E-4, gamma=0.9, noise_strength=0):
params = np.array(init)
param_traj = np.zeros([N_steps+1,2])
param_traj[0] = init
rho = 0.0
for j in range(N_steps):

noise = noise_strength*np.random.randn(params.size)
rho = gamma*rho + alpha*(np.array(grad(params)) + noise)
params = params-rho
param_traj[j+1] = params

return param_traj

def NAG(grad, init, N_steps=5000, alpha=1E-4, gamma=0.9, noise_strength=0):
params = np.array(init)
param_traj = np.zeros([N_steps+1,2])
param_traj[0] = init
rho = 0.0
for j in range(N_steps):

noise = noise_strength*np.random.randn(params.size)
params_nesterov = params-gamma*rho
rho = gamma*rho + alpha*(np.array(grad(params_nesterov)) + noise)
params = params - rho
param_traj[j+1] = params

return param_traj

E. Experiments with GD, GDM, and NAG

Before introducing more complicated algorithms, let us experiment with these methods to gain some
intuition.

Let us look at the dependence of GD on learning rate in a simple quadratic minimum of the form z =
ax2+by2−1. Make plots below for α = 0.1, 0.5, 1, 1.01 and a = 1 and b = 1. NB: to do this, you would have
to add additional arguments to the function GD above in order to pass the new values of a and b; otherwise
the default values a=1 and b=1 will be used by the gradient.

• What are the qualitatively different behaviors that arise as α is increased?
• What does this tell us about the importance of choosing learning parameters? How do these change if
we change a and b above? In particular how does anisotropy change the learning behavior?
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• Make similar plots for GDM and NAG? How do the learning rates for these procedures compare with
those for GD?

• How do the above result change if we add noise? What happens if we vary the noise strength?

In [17]: # Investigate effect of learning rate in GD

a,b = 1.0,1.0
x, y = np.meshgrid(np.arange(-4.5, 4.5, 0.2), np.arange(-4.5, 4.5, 0.2))
z=np.abs(minima_surface(x,y,a,b))

plt.close()
fig, ax = plt.subplots(figsize=(10, 6))
ax.contour(x, y, z, levels=np.logspace(0.0, 5, 35), norm=LogNorm(),␣

↪→cmap="RdYlBu_r")
ax.plot(0,0, 'r*', markersize=18)

#initial point
init1=[-2,4]
init2=[-1.7,4]
init3=[-1.5,4]
init4=[-3,4.5]

alpha1=0.1
alpha2=0.5
alpha3=1.0
alpha4=1.01

gd_1=GD(grad_minima_surface,init1, N_steps=100, alpha=alpha1)
gd_2=GD(grad_minima_surface,init2, N_steps=100, alpha=alpha2)
gd_3=GD(grad_minima_surface,init3, N_steps=100, alpha=alpha3)
gd_4=GD(grad_minima_surface,init4, N_steps=10, alpha=alpha4)

overlay_trajectory_contour(ax,gd_4,'$\\alpha={}$'.format(alpha4),'c-o' , lw=0.5)
overlay_trajectory_contour(ax,gd_3,'$\\alpha={}$'.format(alpha3),'m->' , lw=0.5)
overlay_trajectory_contour(ax,gd_1,'$\\alpha={}$'.format(alpha1),'g--*', lw=0.5)
overlay_trajectory_contour(ax,gd_2,'$\\alpha={}$'.format(alpha2),'b-<' , lw=0.5)

plt.legend()
plt.show()
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F. Algorithms that Estimate the Second Moment of the Gradient

Stochastic gradient descent, with and without momentum, can benefit by using parameter-dependent
gradient updates. This is because steps in different directions need to be taken at a different pace. This can
be accomplished by defning an effective, parameter-dependent gradient update.

As discussed in class in the context of Newton’s method, this presents a number of dilemmas. The learning
rate is limited by the steepest direction which can change depending on where in the landscape we are. To
circumvent this problem, ideally our algorithm would take large steps in shallow, flat directions and small
steps in steep, narrow directions. Second-order methods accomplish this by calculating or approximating the
Hessian and normalizing the learning rate by the curvature. However, this is very computationally expensive
for extremely large models. Ideally, we would like to be able to adaptively change our step size to match the
landscape without paying the steep computational price of calculating or approximating Hessians.

Recently, a number of methods have been introduced that accomplish this by tracking not only the gradient
but also the second moment of the gradient. These methods include AdaGrad, AdaDelta, RMS-Prop, and
ADAM. Here, we discuss the latter of these two as representatives of this class of algorithms.

1. RMS prop (Root-Mean-Square propagation)

In RMS prop (Root-Mean-Square propagation), in addition to keeping a running average of the first
moment of the gradient, we also keep track of the second moment through a moving average. The update
rule for RMS prop is given by

gt = ∇θE(θ)vt = βvt−1 + (1− β)g2
tθt+1 = θt − αt

gt√
vt + ε

,

where β controls the averaging time of the second moment and is typically taken to be about β = 0.9,
αt is a learning rate typically chosen to be 10−3, and ε ∼ 10−8 is a small regularization constant to prevent
divergences. It is clear from this formula that the learning rate is reduced in directions where the norm of
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the gradient is consistently large. This greatly speeds up the convergence by allowing us to use a larger
learning rate for flat directions.

2. ADAM

A related algorithm is given by the ADAM optimizer. In ADAM, we keep a running average of both the
first and second moment of the gradient and use this information to adaptively change the learning rate
for different parameters. In addition to keeping a running average of the first and second moments of the
gradient, ADAM performs an additional bias correction to account for the fact that we are estimating the
first two moments of the gradient using a running average (denoted by the hats in the update rule below).
The update rule for ADAM is given by (with multiplication and division understood to be element wise
operations)

gt = ∇θE(θ)mt = β1mt−1+(1−β1)gtvt = β2vt−1+(1−β2)g2
t m̂t =

mt

1− βt1
v̂t =

vt
1− βt2

θt+1 = θt−αt
m̂t√
v̂t + ε

,

where β1 and β2 set the memory lifetime of the first and second moment and are typically take to be 0.9
and 0.99 respectively, and α and ε are identical to RMSprop. Here, βtj stands for β to the power t.
In the following, you have to write routines for RMSProp and ADAM.

In [12]: ################################################################################
# Methods that exploit first and second moments of gradient: RMS-PROP and ADAM #
################################################################################

"""
grad: function object

function which computes the gradient at a position [x,y] of the surface.
init: list

initial parameters [x,y] to start the descent from.
N_steps: int

number of iterations for the algorithm. Default is 1000.
alpha: double

learning rate / stepsize parameter. Default is 10**-4.
gamma: double (0.0 <= gamma < 1.0)

momentum parameter:
beta, beta_1, beta_2: double

parameters controlling the averaging time of the gradient moments.
noise_strength: double

defines overall scale of noise, as in `noise_strength *
np.random.randn(params.size)`. Default is 0.0.

"""

def rms_prop(grad, init, N_steps=5000, alpha=1E-3, beta=0.9, epsilon=10**-8,
noise_strength=0):

params=np.array(init)
param_traj=np.zeros([N_steps+1,2])
param_traj[0]=init
v=0.0;
for j in range(N_steps):

noise=noise_strength*np.random.randn(params.size)
g=np.array(grad(params))+noise
v=beta*v+(1-beta)*g*g
params= params-alpha*np.divide(g,np.sqrt(v+epsilon))
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param_traj[j+1]=params
return param_traj

def adam(grad, init, N_steps=5000, alpha=1E-4, beta_1=0.9, beta_2=0.99,␣
↪→epsilon=10**-8,

noise_strength=0):
params=np.array(init)
param_traj=np.zeros([N_steps+1,2])
param_traj[0]=init
m=0.0;
v=0.0;
for j in range(N_steps):

noise=noise_strength*np.random.randn(params.size)
g=np.array(grad(params))+noise
m=beta_1*m+(1.0-beta_1)*g
v=beta_2*v+(1-beta_2)*g*g
m_hat=m/(1.0-beta_1**(j+1))
v_hat=v/(1-beta_2**(j+1))
params=params-alpha*np.divide(m_hat,np.sqrt(v_hat+epsilon))
param_traj[j+1]=params

return param_traj

G. Experiments with ADAM and RMSprop

In this section, we will experiment with ADAM and RMSprop. To do so, we will use Beale’s function (see
above) – a function commonly used in optimization protocols:

f(x, y) = (1.5− x+ xy)2 + (2.25− x+ xy2)2 + (2.625− x+ xy3)2.

This function has a global minimum at (x, y) = (3, 0.5). We will use GD, GDM, NAG, RMSprop, and
ADAM to find minima starting at different initial conditions.

One of the things you should experiment with is the learning rate and the number of steps, Nsteps we take.
Initially, we have set Nsteps = 104 and the learning rate for ADAM/RMSprop to α = 10−3 and the learning
rate for the remaining methods to 10−6.

• Examine the plot for these default values by changing the ititial parametesr init below (we have
provided a set of four interesting cases, but feel free to explore more). What do you see?

• Make a plot when the learning rate of all methods is α = 10−6? How does your plot change?
• Now set the learning rate for all algorithms to α = 10−3? What goes wrong? Why?
• Explore what happens if you turn on and vary the noise strength parameter.

In [13]: plt.close()
#Make static plot of the results
Nsteps=int(1E+4)
lr_l=1E-3
lr_s=1E-6

init=np.array([4.0,3.0])
#init=np.array([-2.0,-4.0])
#init=np.array([1.5,1.5])
#init=np.array([-1.0,-0.1])

noise_strength=0.0
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fig, ax=contour_beales_function()

gd_trajectory = GD(grad_beales_function, init, 10**5, alpha=lr_s,
noise_strength=noise_strength)
gdm_trajectory = GDM(grad_beales_function, init,10**5, alpha=lr_s, gamma=0.

↪→9,
noise_strength=noise_strength)
NAG_trajectory = NAG(grad_beales_function, init, Nsteps, alpha=lr_s,␣

↪→gamma=0.9,
noise_strength=noise_strength)
rms_prop_trajectory = rms_prop(grad_beales_function, init, Nsteps, alpha=lr_l,␣

↪→beta=0.9,
epsilon=10**-8, noise_strength=noise_strength)
adam_trajectory = adam(grad_beales_function, init, Nsteps, alpha=lr_l,␣

↪→beta_1=0.9,
beta_2=0.99, epsilon=10**-8, noise_strength=noise_strength)

overlay_trajectory_contour(ax,gd_trajectory, 'GD', 'k', ␣
↪→plot_marker=True)

overlay_trajectory_contour(ax,gdm_trajectory, 'GDM', 'm', ␣
↪→plot_marker=True)

overlay_trajectory_contour(ax,NAG_trajectory, 'NAG', 'c--',␣
↪→plot_marker=True)

overlay_trajectory_contour(ax,rms_prop_trajectory,'RMSProp','b-.',␣
↪→plot_marker=True)

overlay_trajectory_contour(ax,adam_trajectory, 'ADAM', 'g', ␣
↪→plot_marker=True)

plt.legend()
plt.show()
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H. Learning Rate Schedule

Ofte times in Machine Learning, one uses a learning rate schedule. This has a two-fold purpose: (i)
ensure that large steps are taken in the beginning of training where fine-tuning is irrelevant; this can be
used to speed up the convergence of the algorithms. (ii) stabilize convergence algorithm at the later stages
of training. A learning rate schedule is given by a time-dependent learning rate αt. This means that the
value of the learning rate αt changes from one iteration to the next. Typically, this schedule is fixed such
that the learning rate/stepsize parameter decreases with increasing number of steps. Common schedules use
a logarithmic, power-law, or exponential decay, but one can design mixed schedules, where the learning rate
is kept fixed after a fixed amount of iterations.
CAVEAT: if the decay rate of your learning rate schedule is too large, then it may artificially prevent the

ML model from learning by suppressing the parameter update (a vanishing learning rate means no update).

• Explain the difference between a learning rate schedule and a parameter-dependent learning rate (like
the ones we saw in RMSprop and ADAM.

• Add a learning rate schedule to the adam optimizer above
• Explore the effects of using a schedule for all five algorithms: GD, GDM, NAG, RMSprop, ADAM.
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