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I. DEEP LEARNING IN JAX

This notebook provides an introduction to basic Deep Supervised Learning using JAX. In particular, we
will cover the MNIST classification problem – one of the first big success stories in ML.

Our goal is to become familiar with the typical pipelines of Deep Learning in JAX. This includes:

• building models: shallow and deep networks with nonlinear activations, fully-connected and convolu-
tional layers, etc;

• defining cost functions and figure-of-merit functions which test the model accuracy;
• computing derivatives of model parameters;
• understanding the optimizer pipeline and how to update the model parameters.

A. Classification Problems

The “harmonic oscillator” of Deep Learning is the MNIST problem.

1. The MNIST Dataset

The MNIST classification problem is one of the classical ML problems for learning classification on high-
dimensional data with a fairly sizeable number of examples. Yann LeCun and collaborators collected and
processed 70 000 handwritten digits (60 000 are used for training and 10 000 for testing) to produce what
became known as one of the most widely used datasets in ML: the MNIST dataset. Each handwritten digit
comes in a grayscale square image in the shape of a 28×28 pixel grid. Every pixel takes a value in the range
[0, 255], representing 256 nuances of the gray color from black to white. The problem of image classification
finds applications in a wide range of fields and is important for numerous industry applications of ML: there
have exists a number of much more challenging datasets, such as Fashion-MNIST or ImageNet.

2. Data Preprocesssing

The first two codeblocks below download the MNIST dataset from the web, and preprocess the MNIST
data. In particular, the data are separated into a training set, and a test set, and the labels are encoded in
one-hot form.

In [1]: ##### download MNIST data and store it in under directory _DATA

import array
import gzip
import os
from os import path
import struct
import urllib.request

import numpy as np

# path to data directory

https://jax.readthedocs.io/en/latest/
http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
http://www.image-net.org/
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_DATA = "/tmp/jax_example_data/"

def _download(url, filename):
"""Download a url to a file in the JAX data temp directory."""
if not path.exists(_DATA):

os.makedirs(_DATA)
out_file = path.join(_DATA, filename)
if not path.isfile(out_file):

urllib.request.urlretrieve(url, out_file)
print("downloaded {} to {}".format(url, _DATA))

def _partial_flatten(x):
"""Flatten all but the first dimension of an ndarray."""
return np.reshape(x, (x.shape[0], -1))

def _one_hot(x, k, dtype=np.float32):
"""Create a one-hot encoding of x of size k."""
return np.array(x[:, None] == np.arange(k), dtype)

def mnist_raw():
"""Download and parse the raw MNIST dataset."""
# CVDF mirror of http://yann.lecun.com/exdb/mnist/
base_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"

def parse_labels(filename):
with gzip.open(filename, "rb") as fh:

_ = struct.unpack(">II", fh.read(8))
return np.array(array.array("B", fh.read()), dtype=np.uint8)

def parse_images(filename):
with gzip.open(filename, "rb") as fh:

_, num_data, rows, cols = struct.unpack(">IIII", fh.read(16))
return np.array(array.array("B", fh.read()),

dtype=np.uint8).reshape(num_data, rows, cols)

for filename in ["train-images-idx3-ubyte.gz", "train-labels-idx1-ubyte.gz",
"t10k-images-idx3-ubyte.gz", "t10k-labels-idx1-ubyte.gz"]:

_download(base_url + filename, filename)

train_images = parse_images(path.join(_DATA, "train-images-idx3-ubyte.gz"))
train_labels = parse_labels(path.join(_DATA, "train-labels-idx1-ubyte.gz"))
test_images = parse_images(path.join(_DATA, "t10k-images-idx3-ubyte.gz"))
test_labels = parse_labels(path.join(_DATA, "t10k-labels-idx1-ubyte.gz"))

return train_images, train_labels, test_images, test_labels

def mnist(permute_train=False):
"""Download, parse and process MNIST data to unit scale and one-hot labels.

↪→"""
train_images, train_labels, test_images, test_labels = mnist_raw()
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train_images = _partial_flatten(train_images) / np.float32(255.)
test_images = _partial_flatten(test_images) / np.float32(255.)
train_labels = _one_hot(train_labels, 10)
test_labels = _one_hot(test_labels, 10)

if permute_train:
perm = np.random.RandomState(0).permutation(train_images.shape[0])
train_images = train_images[perm]
train_labels = train_labels[perm]

return train_images, train_labels, test_images, test_labels

a. Minibatches Now that we’ve written the functions to download and preprocess the MNIST dataset,
let’s prepare it for training. Since we’ll be using some variant of SGD (e.g., ADAM, etc.), we need to feed
data into our machine learning model (e.g., a DNN) in random minibatches.

The function data_stream creates a python generator which returns one minibatch of the randomized
training set at a time, until all training datapoints are exhausted. To do this efficiently, data_stream()
defines a python generator. Generators are functions containing loops which yield a result one at a time
until the loop is exhausted, rather than return the output.

If you’re not familiar with generators, explore carefully the code below first. Make sure to explore the effect
of the while-loop statement which is currently commented out. What is the purpose of having generators?
What are generetors good/useful for? Explore the data_stream() generator below by printing a few small
minibatches.

In [2]: def my_generator():
#while True:

for j in range(10):
yield j

gen = my_generator()
print(gen) # shows a generator object

print('\nfirst loop:\n')

# call generator
for i in range(4):

print(i, next(gen) )

print('\nsecond loop:\n')

for i in range(10):
print(i, next(gen) )

<generator object my_generator at 0x7fe594e767d0>

first loop:

0 0
1 1
2 2
3 3

second loop:

0 4
1 5
2 6
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3 7
4 8
5 9

---------------------------------------------------------------------------

StopIteration Traceback (most recent call last)

<ipython-input-2-e0008476830e> in <module>
16
17 for i in range(10):

---> 18 print(i, next(gen) )

StopIteration:

In [3]: ### define minibatches

# fix seed
seed=0
np.random.seed(seed)

##### define data variables and the minibatch generator
# load MNIST data
train_images, train_labels, test_images, test_labels = mnist()

print('\ntrain data: image shape: {}, label shape: {}.'.format(train_images.
↪→shape,

train_labels.shape ))
print('test data : image shape: {}, label shape: {}.\n'.format(test_images.shape,
test_labels.shape ))

# size of a single minibatch
batch_size=128
# size of the trining set
num_train = train_images.shape[0]
# define number of complete minibatches (data size need not be muptiple of␣

↪→batch_size)
num_complete_batches, leftover = divmod(num_train, batch_size)
# total number of minibatches is the smallest integer to fit all minibatches in␣

↪→the
dataset
num_batches = num_complete_batches + bool(leftover)

def data_stream():
"""
This function defines a generator which produces random batches of data, one␣

↪→at a
time.

"""
rng = np.random.RandomState(0)
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while True:
perm = rng.permutation(num_train) # compute a random permutation
for i in range(num_batches):

batch_idx = perm[i * batch_size:(i + 1) * batch_size]
yield train_images[batch_idx], train_labels[batch_idx]

# define the batches generator
batches = data_stream()

train data: image shape: (60000, 784), label shape: (60000, 10).
test data : image shape: (10000, 784), label shape: (10000, 10).

b. Plot the Data The codeblock below plots one of the datapoints. Pay attention to the title of the plot
where the corresponding label in one-hot form is given. Make sure you familiarize yourself with the data
size: shapes, dimensions, etc. We said earlier that each pixel takes on the values [0, 1, . . . , 255], but below it
seems like they are squeeze in the interval [0, 1]: Where in the code did we do that squeezing? Why did we
do it?

In [4]: import matplotlib
from matplotlib import pyplot as plt
# static plots
%matplotlib inline

### show the first data point as an example
n=1111 # test data point number

plt.imshow(test_images[n].reshape(28,28),cmap='Greys')
plt.title('label: {}'.format(test_labels[n]) )

plt.show()

# print the array which generates the image above and expore it!
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3. SoftMax Regression

Our goal is to train a ML model that classifies the images in the test set, by only using the data in the
training set. We will explore shallow and deep networks, as well as fully-connected and convolutional layers.

Instead of learning directly the catecory an imamge falls into, learning is more stable if we model the prob-
ability to be in a certain category i. To do this, we will use a SoftMax output nonlinearity activaion, which
can be thought of as a statistical model that assigns the probability that a given input image corresponds
to any of the 10 handwritten digits. This layer is a multi-categorical generalization of the logistic regression
and reads as:

p
(
y = i|x, {θk}9k=0

)
=

exp(xT · θi)∑9
j=0 exp(x

T · θj)

Where p
(
y = i|x, {θk}9k=0

)
is the probability that input x is the i-th digit, i ∈ {0, 1, 2, . . . , 9}. The model

parameters (sometimes called trainables or learnables) are denoted by θ: in the simplest model, there’s one
θj per category. One can use this model for prediction by taking that value of y for which the probability is
maximized:

ypred = argmax
j
p
(
y = j|x, {θk}9k=0

)
.

In practice, it is often more convenient to use the logarithm of the softmax function to learn probabilities.
Using a log scale allows the model to more easily capture probabilities which differ by several orders of
magnitude. Often, there is a special function for this in ML packages, with improved performance.

4. Three ML Models

Below, you have to use the JAX library to build three different models:
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A. SoftMax Logistic Regression: no correlations between pixels, no info about image dimensionality
B. DNN: a fully-connected (fc) deep neural network: no info about image dimensionality
C. CNN: a convolutional (conv) neural network with a fully-connected head

5. SoftMax Logistic Regression

We begin with the SoftMax Logistic Regression. The code structure will later allow us to easily generalize
and re-use the functions we write to the DNN and CNN models. We will proceed in the following steps:

1. Define the ML model.
2. Define the loss function, and a function which measures the accuracy of the model predictions.
3. Define generalized gradient descent optimizer
4. Define the training loop and train the model

Fill-in the code snippet below. To do this, you will have to explore and read the JAX documentation:
* start with jax.numpy and make yourself familiar with the functions in there. Why is there a need to a
JAX version of numpy, i.e. why not use the ordinary numpy library? You may als check out jax.scipy. *
look up jax.random: random numbers work a bit differently in JAX, compared to numpy, but this is not
hat important for understanding how to do deep learning in JAX. * neural network architectures, like the
fc and conv layers we will need, are described in jax.experimental.stax; make sure you understand the
difference between required/compusory and optional arguments. The jax.nn package contains the nonlinear
activation functions. To apply the activations elementwise, use either the elementwise function, or capital-
letter activations instead.
a. Define the ML model We will first construct the SoftMax model. To do so, we think of it as a single

layer NN. To construct the layer, use the init_fun, apply_fun = stax.serial() function. This function
returns two other functions: init_fun, apply_fun (you may give them whatever names you want). *
output_shape, params = init_fun(rng, input_shape) is used to initialize the parameters of the model:
it returns the shape of the output at the topmost layer, and a tuple of nested tuples params which contains
the model parameters. * predictions = predict(params, data) makes use of the model as defined by
params and the data to apply the model on data and produce the model output.

Use a subset of the training data which contains, say three, data points. We will use it to debug and
explore the model we have defined.

1.0. build a model consisting of a single Dense layer, followed by the LogSoftMax activation.
1.1. compute the model predictions on that toy subset
1.2. check the shape of the output. Does it agree with the output_shape tuple returned by init_fun?
1.3. print out the prediction values themselves: how many values does each of the three toyset data-

points have? Do these values represent a well-defined probability distribution? – check the conservation of
probability.

1.4. print the params variable and explore it carefully. It defines a so-called JAX tree. Manipulating this
ordered list of nested lists can be very annoying if you want to do that from scratch. Instead, explore and
use the functions of the jax.tree_utils package. Understanding this is especially important if you want to
access the parameters of a specific layer in the model. Extract the weights and biases from the single layer
model, and check their shape/sizes of the parameters; waht is their data type type(variable); why is this
new datatype needed and how can you transfer data from an ordinary numpy datatype to such a datatype
back and forth?

In [5]: import jax.numpy as jnp # jax's numpy version with GPU support
from jax import random # used to define a RNG key to control the random input in␣

↪→JAX
from jax.experimental import stax # neural network library
from jax.experimental.stax import Dense, Relu, LogSoftmax # neural network layers

# set key for the RNG (see JAX docs)
rng = random.PRNGKey(seed)

# cast data into 1D image format suitable for fc layers: the shape should be

https://jax.readthedocs.io/en/latest/jax.numpy.html
https://jax.readthedocs.io/en/latest/jax.random.html
https://jax.readthedocs.io/en/latest/jax.experimental.stax.html
https://jax.readthedocs.io/en/latest/jax.nn.html
https://jax.readthedocs.io/en/latest/_modules/jax/experimental/stax.html#elementwise
https://jax.readthedocs.io/en/latest/jax.tree_util.html
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(N_datapoints, 28*28)
train_images = train_images.reshape(-1,28*28) # -1: number of data points,␣

↪→(28*28):
(height*width) dimensions of image
test_images = test_images.reshape(-1,28*28)

# define functions which initialize the parameters and evaluate the model
initialize_params, predict = stax.serial(

### SoftMax Regression
Dense(10), # 10 output neurons
LogSoftmax # NB: computes the log-

probability

# ### fully connected DNN
# Dense(512), # 512 hidden neurons
# Relu,
# Dense(256), # 256 hidden neurons
# Relu,
# Dense(10), # 10 output neurons
# LogSoftmax # NB: computes the log-
probability

)

# initialize the model parameters
output_shape, inital_params = initialize_params(rng, (-1, 28 * 28)) # fcc layer␣

↪→28x28
pixes in each image

print('\noutput shape of the model is {}.\n'.format(output_shape))

# check how network works on 3 examples
predictions = predict(inital_params, test_images[0:3])

# print shape of output
print("actual output shape is:", predictions.shape)

# check if probability is conserved
print('log(softmax) values:', predictions[0])
print('conservation of probability', np.sum(jnp.exp(predictions), axis=1))

WARNING:absl:No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0 and
rerun for more info.)

output shape of the model is (-1, 10).

actual output shape is: (3, 10)
log(softmax) values: [-2.2292223 -2.4820766 -2.7947464 -2.1780825 -1.9830028
-2.2069645
-1.9345262 -2.6357243 -2.065387 -3.1278682]
conservation of probability [0.9999999 1.0000001 1.0000001]

b. Define the loss/cost function Next, we define the loss/cost function and the accuracy function to
measure the performance of the model. Defining these functions in JAX works the same way as in ordinary
python. The only difference is that one has to use jax.numpy instead of ordinary numpy (for ordinary numpy
is not optimized for GPUs).
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2.0. Complete the loss(params, batch) function which computes the cross entropy, given the model
params and the data of a minibatch batch. Using functions like jnp.mean or jnp.sum can make the loss
agnostic to the size of the batch.

2.1. Complete the mean_accuracy(params, batch) function. It computes the mean number of datapoints
which produce a correct preduction.

2.2. Test the loss and mean_accuracy functions on the toy dataset. This helps spotting errors and
debugging them.

2.3. (optional): use the tree_flatten function from the jax.tree_util package and add an L2 regularizer
to the loss function. To do so, define another function l2_regularizer(params, lmbda) which computes
the L2 norm of the model parameters and weighs it by the regulazation strength lmbda. Is there a JAX
function that computes the L2 norm?

2.4. explore the jax.grad function. Test it on the loss function by computing the values of the gradient
of the model parameters for the points at the toyset. Check the form of the gradient output. Check the
shapes/dimensions of the gradients themselves.

In [6]: ### define loss and accuracy functions

from jax import grad
from jax.tree_util import tree_flatten # jax params are stored as nested tuples;␣

↪→use
this to manipulate tuples

def l2_regularizer(params, lmbda):
"""
Define l2 regularizer: $\lambda \ sum_j ||theta_j||^2 $ for every parameter␣

↪→in the
model $\theta_j$

"""
return lmbda*jnp.sum(jnp.array([jnp.sum(jnp.abs(theta)**2) for theta in

tree_flatten(params)[0] ]))

def loss(params, batch):
"""
Define cost (or lost) function for softmax classification.

"""
inputs, targets = batch
preds = predict(params, inputs)
return -jnp.mean(jnp.sum(preds * targets, axis=1)) + l2_regularizer(params,␣

↪→0.001)

def mean_accuracy(params, batch):
"""
Define accuracy function: the mean number of datapoints which have correct

preductions.
This function is not used for training; only to test the performance.

"""
inputs, targets = batch
target_class = jnp.argmax(targets, axis=1)
predicted_class = jnp.argmax(predict(params, inputs), axis=1)
return jnp.mean(predicted_class == target_class)

https://jax.readthedocs.io/en/latest/jax.html#jax.grad
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c. Define the optimizer Next, we define the optimizer. Make sure to read the documentation of
jax.experimental.optimizers. In particular, you may want to check out the source code for SGD, SGD
with momentum, and ADAM.

3.0. define the optimizer hyperparameters (step size/learning rate, etc.)
3.1. call the optimizers.momentum constructor and obtain the opt_init, opt_update, get_params

functions. Makes sure you read the documentation to understand what they do, and how they are used.
3.2. Complete the update(i, opt_state, batch) function. The only nontrivial step is the the compu-

tation of the gradient of the loss function, which we explored in part 2.4. above. Which line does the actual
update of the model parameters (e.g. the SGD step) take place in?

3.3. add a @jit decorator (Just-In-Time compiler) to the update function. This will make jax compile
the update() function to give you speed (even on the CPU!). Explore the documentation for jax.jit. One
caveat is that any functions (and subroutines) used under the jit decorator must be using jax.numpy or
jax.scipy; using ordinary numpy and jit will throw an error (thy that out by modifying the loss function!).

In [7]: ### define generalized gradient descent optimizer and a function to update model
parameters

from jax.experimental import optimizers # gradient descent optimizers
from jax import jit

step_size = 0.001 # step size or learning rate
momentum_mass = 0.9 # "gamma" parameter in GD+momentum

# compute optimizer functions
opt_init, opt_update, get_params = optimizers.momentum(step_size,␣

↪→mass=momentum_mass)

# define function which updates the parameters using the change computed by the
optimizer
@jit # Just In Time compilation speeds up the code; requires to use jnp␣

↪→everywhere;
remove when debugging
def update(i, opt_state, batch):

"""
i: int,

counter to count how many update steps we have performed
opt_state: object,

the state of the optimizer
batch: np.array

batch containing the data used to update the model

Returns:
opt_state: object,

the new state of the optimizer

"""
# get current parameters of the model
current_params = get_params(opt_state)
# compute gradients
grad_params = grad(loss)(current_params, batch)
# use the optimizer to perform the update using opt_update
return opt_update(i, grad_params, opt_state)

d. Train Model At last, we have built all ingredients and we can start training our model. We train the
model in epochs. In every epoch, we loop over the number of minibatches to exhaust the training set. We
update the model parameters for each minibatch (hence the number of epochs is not the same of the number

https://jax.readthedocs.io/en/latest/jax.experimental.optimizers.html
https://jax.readthedocs.io/en/latest/_modules/jax/experimental/optimizers.html#sgd
https://jax.readthedocs.io/en/latest/_modules/jax/experimental/optimizers.html#momentum
https://jax.readthedocs.io/en/latest/_modules/jax/experimental/optimizers.html#momentum
https://jax.readthedocs.io/en/latest/_modules/jax/experimental/optimizers.html#adam
https://jax.readthedocs.io/en/latest/jax.html#jax.jit
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of updates). Therefore, we use a variable itercount to count the number of updates; in fact, itercount
will be a trivial generator similar to the ones discussed above. Once we’ve done the update, we can read off
the model parameters and check the current loss and model accuracy on the test set for the given epoch.

Then we move to the second epoch and repeat the procedure. The model learns if the loss on the test
data goes down, and the accuracy on the test data goes up. We can monitor these quantities durin training.

4.0. define placeholders for the train_accuracy and test_accuracy.
4.1. initialize the optimizer state using the opt_init function.
4.2. loop over the epochs.
4.2.1. For each epoch, loop over all minibatches and use the update() function to compute the gradients

of the params and update the model. Updating the model happens automatically upon calling update().
How does update know about the current value of params? Check if params is changing after each call of
update.

4.2.2. Compute the mean accuracy of the test and traing data, and store it in train_accuracy and
test_accuracy. Print these values for reference.

In [8]: ### Train model

import time
import itertools

# define geenrator to count the number of updates
itercount = itertools.count()

# define number of training epochs
num_epochs = 101

# define figures of merit
train_accuracy=np.zeros(num_epochs)
test_accuracy=np.zeros_like(train_accuracy)

print("\nStarting training...\n")

# set the initial model parameters in the optimizer
opt_state = opt_init(inital_params)

# loop over the number of training epochs
for epoch in range(num_epochs):

### record time
start_time = time.time()

### train in minibatches until the entire dataset is exhausted:
# the entire dataset is divided into _random_ minibatches;
# all minibatches are shown to the model before going to next epoch
for _ in range(num_batches):

# use the data to update the model parameters
opt_state = update(next(itercount), opt_state, next(batches))

### record time needed for a single epoch
epoch_time = time.time() - start_time

### evaluate performance of the model at each fixed epoch

# retrieve current model parameters
params = get_params(opt_state)

# measure the accuracy on the training and test datasets
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train_accuracy[epoch] = mean_accuracy(params, (train_images, train_labels))
test_accuracy[epoch] = mean_accuracy(params, (test_images, test_labels))

# print results every 10 epochs
if epoch % 10 == 0:

print("Epoch {} in {:0.2f} sec".format(epoch, epoch_time))
print("Training set accuracy {}".format(train_accuracy[epoch]))
print("Test set accuracy {}\n".format(test_accuracy[epoch]))

Starting training...

Epoch 0 in 0.52 sec
Training set accuracy 0.8258500099182129
Test set accuracy 0.8352000117301941

Epoch 10 in 0.10 sec
Training set accuracy 0.8929499983787537
Test set accuracy 0.9003000259399414

Epoch 20 in 0.12 sec
Training set accuracy 0.9025333523750305
Test set accuracy 0.9090999960899353

Epoch 30 in 0.16 sec
Training set accuracy 0.9068499803543091
Test set accuracy 0.9121000170707703

Epoch 40 in 0.13 sec
Training set accuracy 0.9095333218574524
Test set accuracy 0.9143999814987183

Epoch 50 in 0.14 sec
Training set accuracy 0.911466658115387
Test set accuracy 0.9151999950408936

Epoch 60 in 0.10 sec
Training set accuracy 0.912933349609375
Test set accuracy 0.9157999753952026

Epoch 70 in 0.10 sec
Training set accuracy 0.9145166873931885
Test set accuracy 0.916100025177002

Epoch 80 in 0.13 sec
Training set accuracy 0.914900004863739
Test set accuracy 0.9158999919891357

Epoch 90 in 0.10 sec
Training set accuracy 0.9155666828155518
Test set accuracy 0.916700005531311

Epoch 100 in 0.13 sec
Training set accuracy 0.9156666398048401
Test set accuracy 0.9176999926567078
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e. Explore the training properties and behavior Below, we compare the training and test average accu-
racy curves.

In [14]: ### plot and examine learning curves

epochs=list(range(num_epochs))

plt.plot(epochs, train_accuracy, '-b', label='training data' )
plt.plot(epochs, test_accuracy, '-r', label='test data' )

plt.xlabel('epoch')
plt.ylabel('accuracy')

plt.grid()
plt.legend()
plt.show()

f. Examine the trained Weights Let’s examine the trained weights and check how they look like. This
is a first attempt to answer the question what the ML model learns and how it does the classification.

In [10]: ### plot weights vs the pixel position (works only for a single layer)
### code works only SoftMax regression (!)

from jax. tree_util import tree_flatten # jax params are stored as nested␣
↪→tuples; use

this to manipulate tuples

# extract weights and biases using tree_flatten
params = get_params(opt_state)
weights, biases = tree_flatten(params)[0]
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# print the weights (biases are not so interesting)
plt.figure(figsize=(15, 7)) # figure size

scale = np.abs(weights).max() # define overall scale

for i in range(10): # loop over the number of weights

plot = plt.subplot(2, 5, i + 1)
plot.imshow(weights[:,i].reshape(28, 28), interpolation='nearest',

cmap=plt.cm.Greys, vmin=-scale, vmax=scale)
plot.set_xticks(())
plot.set_yticks(())
plot.set_xlabel('Class %i' % i)

plt.suptitle('classification weights vector $w_j$ for digit class $j$')

plt.show()

6. DNN model

We now want to train a DNN. To do that, all we need to do is add more layers to the model in the
stax.serial() function, and re-run the training loop. Build a fully-connected DNN model with layer sizes
(784, 512, 256, 10), where 784 corresponds to the input layer, and 10 – to the output layer; i.e. we have
two hidden layers. Use a Relu nonlinearity after each layer, except for the output where you need the
LogSoftMax.

7. CNN model

The CNN model is basically the same as the DNN model, except is also uses convolutional layers. Con-
volutional layers know about the dimensionality of the input. In our case, the data is two-domensional,
and thus needs to be reshaped accordingly. Suppose the data had color: in color images each pixel has
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three values in between [0,255] – one for each of the red, green, and blue channels. Hence, the dataset is a
four-dimensiona array with shape (N_points, N_Channels, Height, Width). For black and white images,
we just set N_Channels=1.

C.1 reshape the train_images and test_images to 4-dimensional array. We use the convention
dim_numbers='NCHW': (N data points, Channels, Height, Width).

C.2 use GeneralConv(dim_numbers, output_channels, filter_size, strides) layers to add conv
layers to the neural net, followed by Relu nonlinearities. Add two layers with: * output_channels=16,
filter_size=(4,4), strides=(4,4) * output_channels=32, filter_size=(3,3), strides=(1,1)

C.3. Next, we want to attach two dense layers. To be able to do that, we take the output of the last
conv layer which has the shape (N, C, H, W), and flatten it to a 1-dimensional array of size (N, C*H*W).
Then, we can stack the dense layers, followed by Relu nonlinearities each: * 256 hidden neurals * 10 output
neurons, corresponding to the 10 degit categories.

C.4. Finally, we add the LogSoftMax layer.
C.5. Play with the output of the CNN on the toy dataset to convince yourself you have implemented

everything properly.
The rest of the code we constructed above can be applied without further modification. Why is that so?

Do you appreciated now the usefulness of Deep ML packages?

In [11]: ### Convolutional Neural network

from jax.experimental.stax import GeneralConv, Flatten # neural network layers

# cast data into 2D image format
train_images = train_images.reshape(-1,1,28,28) # -1: number of data points, 1:␣

↪→input
channels, (28,28) = (height, width) dimensions of image
test_images = test_images.reshape(-1,1,28,28)

# conv net convention
dim_nums=('NCHW', 'OIHW', 'NCHW') # default for (input, filters, output)

# define functions which initialize the parameters and evaluate the model
initialize_params, predict = stax.serial(

### convolutional NN (CNN)
GeneralConv(dim_nums, 16, (4,4),

strides=(4,4) ), # 16 output channels, (4,4) filter
Relu,
GeneralConv(dim_nums, 32, (3,3),

strides=(1,1) ), # 32 output channels, (3,3) filter
Relu,
Flatten, # flatten output
Dense(256), # 256 hidden neurons
Relu,
Dense(10), # 10 output neurons
LogSoftmax # NB: computes the log-

probability
)

# initialize the model parameters
output_shape, inital_params = initialize_params(rng, (-1, 1, 28, 28)) # conv␣

↪→layer, 1
input channel, 28x28 pixes in each image

print('\noutput shape of the model is {}.\n'.format(output_shape))
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# check how network works on 3 examples
predictions = predict(inital_params, test_images[0:3])

# print shape of output
print("actual output shape is:", predictions.shape)

# check if probability is conserved
print('log(softmax) values:', predictions[0])
print('conservation of probability', np.sum(jnp.exp(predictions), axis=1))

output shape of the model is (-1, 10).

actual output shape is: (3, 10)
log(softmax) values: [-2.264744 -2.4081538 -2.2366066 -2.302778 -2.4543526
-2.3551548
-2.2510576 -2.1797056 -2.2681572 -2.336163 ]
conservation of probability [0.9999999 1. 1.0000001]

8. Further questions

• do you see an advantage of JAX when compared to the other ML packages: TensorFlow or PyTorch?
• compare the weights plots for the SoftMax regression in the presence of an L2 regularizer added to the
cost function. You can use a reguarization strength of lmbda=0.001; what happens to the score if you
increase/decrease this number? What if you implement an L1 regularizatin instead?

• try and look for the patterns of the imprinted digits in the output weights of the DNN and CNN layers.
Explain your findings, and compare them to the SoftMax regression.
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