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INTRODUCTION AND 
PREVIOUS WORK



What is the game of GO

◦ The game was invented in China more than ơ,̜ ǝǝ years ago and is believed to be the oldest board game 
continuously played to the present day

◦ Two players take turns placing stones on the vacant intersections (points) of a Ơͥ *Ơͥ  board

◦ The aim is to surround more territory than the opponent, without letting your opponent surround your 
stones

◦ Easy to play hard to master

◦ Number of legal positions is ơ.ǝͤ Ơ̹ ͤ Ơͥ ͥ ͗ ͤ ơþƠǝƠͣ ǝ



Previous Work - AlphaGo Fan
◦ Named after the European champion Fan Hui, which it defeated in October ơǝƠ̜

◦ I t utilized two deep neural networks: a policy network that outputs move probabilities, and a value 
network that outputs a position evaluation

◦ The policy network was initially trained by supervised learning to predict human expert moves and was 
improved by policy-gradient reinforcement learning

◦ The value network was trained to predict the winner of games played by the policy network against itself

◦ Once trained, these networks were combined with a Monte-Carlo Tree Search (MCTS)



Previous Work - AlphaGo Lee
◦ Named after Lee Sedol, the winner of Ơͤ  international titles, in March ơǝƠ̹

◦ Uses a very similar approach as the AlphaGo Fan with minor improvements

◦ Can be considered as the first algorithm to achieve super human level of GO mastery



ALPHA GO ZERO



Alpha Go Zero

I t is a new algorithm having several changes compared to previous iterations:

Ơ. I t is trained solely by self-play reinforcement learning, starting from random play, without any 
supervision or use of human data

ơ. I t uses a single neural network, rather than separate policy and value networks

͗ . I t uses a simpler tree search that relies upon this single neural network to evaluate positions and 
sample moves, without performing any Monte-Carlo rollouts



The Neural Network

◦ The neural network fо takes as an input the board state s and outputs both move probabilities and a 
value: (p,v) =fо(s)

◦ The vector of move probabilities p represents the probability of selecting each move (including pass): 
pa=Pr(a|s)

◦ The value v is a scalar evaluation, estimating the probability of the current player winning from position 
s

◦ The neural network consists of many residual blocks of convolutional layers with batch normalization 
and rectifier non-linearities



Self play 
reinforcme
nt learning
a) The program plays a 
game sƠ,...,sT against itself. 
Moves are selected by the 
MCTS and the terminal 
position sT is scored to 
compute the game winner 
z

b) Neural network training 
in AlphaGo Zero. The 
neural network takes the 
position st and outputs 
probability vector for the 
next move and a scalar for 
the win probability



The MCTS

◦ The Monte-Carlo tree search uses the neural network fо to guide its simulations

◦ Each edge (s,a) in the search tree stores a prior probability P(s,a), a visit count N(s,a), and an action-
value Q(s,a)

◦ The tree iteratively selects nodes for which Q(s,a)+U(s,a) is the largest, where U(s,a)∝P(s,a)/ (Ơ+N(s,a)) 
until it reaches a leaf node sL

◦ Then the direct children of sL are expanded and the network generates both prior probabilities and 
evaluation: (P(sL,đ),V(sL)) =fо(sL)

◦ After that all traversed edges have their visit count (N) incremented and value (Q) updated

◦ Finally a probability vector ǃ  is generated proportional to N(s,a)Ơ/ ļ , where ļ  is parameter controlling the 
temperature



a) Edges are traversed based on Q(s,a)+U(s,a)
b) The leaf node is expanded and the associated positions is evaluated by the neural 

network(P(s,đ),V(s)) = fо(s)
c) Action-values Q are updated to track the mean of all evaluations V in the subtree below that action
d) Once the search is complete, search probabilit ies ǃ  are returned, proportional to NƠ/ ļ



The RL pipeline

◦ First, the neural network is initialized to random weightsоǝ
◦ At each time-step t, an MCTS search ǃ t=ķоiÞƠ(st) is executed using the previous iteration of neural 

network fоiÞƠ

◦ The game terminates at step T and a reward of rT∈ {ÞƠ,+Ơ} based on the winner

◦ The data for each time-step t is stored as (st,ǃ t,zt) where zt=±rT is the game winner

◦ The neural network (p,v) =fоi(s) is adjusted to minimize the error between v and z, and to maximize the 
similarity between p and ǃ

◦ The parameters о are adjusted based on a GD of a loss function l = (zÞv)ơ Þ ǃ Tlogp + c| |о| |ơ



EMPIRICAL 
ANALYSIS OF 

ALPHAGO ZERO



The training process

◦ Training started from completely random behavior and continued without human intervention for 
approximately ͗  days

◦ ͑ .ͥ  million games of self-play were generated, using Ơ,̹ ǝǝ simulations for each MCTS

◦ This corresponds to approximately ǝ.͑ s thinking time per move

◦ Then AlphaGo Zero was evaluated against AlphaGo Lee and defeated it Ơǝǝ to ǝ

◦ Additional comparisons were made with a supervised learning algorithm using the same neural network 
and an expert moves dataset



a) Performance of self-play reinforcement learning
b) Prediction accuracy on human professional moves
c) Mean-squared error(MSE) on human professional game outcomes



Additional evaluation

To separate the contributions of architecture and algorithm, four variations of the AlphaGo architectures 
were compared:

◦ Algorithms
◦ Using separate policy and value networks, as in AlphaGo Lee
◦ Using combined policy and value networks, as in AlphaGo Zero

◦ Architectures:
◦ Using the convolutional network architecture, as in AlphaGo Lee
◦ Using the residual network architecture, as in AlphaGo Zero



a) Elo ratings of the individual algorithms
b) Prediction accuracy on human professional moves
c) Mean-squared error(MSE) on human professional game outcomes



FINAL VERSION AND 
CONCLUSION



Final version

◦ A second instance of AlphaGo Zero was trained from random behavior for ͑ ǝ days

◦ Over the course of training, ơͥ  million games of self-play were generated

◦ The fully trained AlphaGo Zero was evaluated using an internal tournament against AlphaGo Fan, 
AlphaGo Lee, and several previous Go programs

◦ AlphaGo Master was also included in the tournament œa program based on the algorithm and 
architecture presented in the paper but utilizing human data and features

◦ AlphaGo Master defeated the strongest human professional players ̹ ǝœǝ in online games in January 
ơǝƠͣ

◦ Finally, AlphaGo Zero played head to head against AlphaGo Master in a Ơǝǝ game match. AlphaGo Zero 
won by ͤ ͥ  games to ƠƠ



a) Learning curve for AlphaGo Zero using larger  ͑ ǝ block residual network over  ͑ ǝ days
b) Final performance of AlphaGo Zero



Conclusions

◦ AlphaGo Zero discovered a remarkable level of Go knowledge during its self-play training process 
including discovering novel Go tactics

◦ The results comprehensively demonstrate that a pure reinforcement learning approach is fully feasible, 
even in the most challenging of domains

◦ Furthermore, a pure reinforcement learning approach requires just a few more hours to train, and 
achieves much better performance, compared to training on human expert data

◦ In principle this approach should be applicable to other games with perfect information



THANK YOU AND 
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