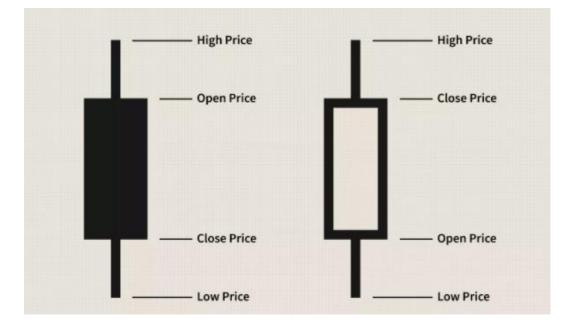
A Deep Reinforcement Learning Approach for Automated Cryptocurrency Trading

Giorgio Lucarelli and Matteo Borrotti

Universit`a degli Studi di Milano-Bicocca, Milan, Italy


Istituto di Matematica Applicata e Tecnologie Informatiche, IMATI-CNR, Milan, Italy

Cryptocurrency

Candlestick

Candlestick chart

Reinforcement Learning

Different Q-networks are available in literature:

- **Deep Q-Networks** (DQNs) DQNs stabilize the training of action value function approximation with deep neural networks, in particular Convolutionary Neural Networks (CNNs), using experience replay and target network.
- Double Deep Q-Networks (D-DQNs) D-DQN improved DQN avoiding over-estimation. In D-DQN a
 greedy policy is evaluated in accordance with an online network and a target network is used to
 estimate its value.
- Dueling Double Deep Q-Networks (DD-DQNs) is based on a dueling network architecture to estimate value function V (s) and the associated advantage function A(s, a) = Q(s, a) V (s), and then combine them in order to estimate Q(s, a). In DD-DQN, a CNN layer is followed by two streams of fully connected (FC) layers, used to estimate the value function and the advantage function separately; then the two streams are combined to estimate the action value function.

Q-learning Trading System

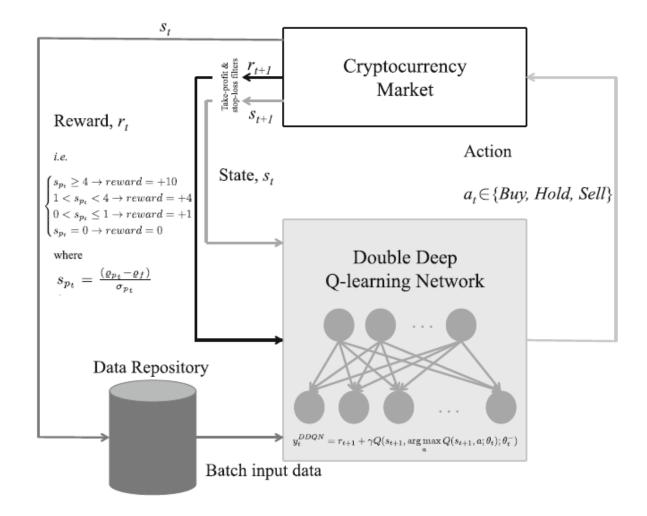
The proposed Q-learning trading system is based on **Double Deep Q-Networks** and **Dueling Double Deep Q-Networks**.

The Q-learning trading system rewards the agent with two possible functions - Sharpe ratio and simple Profit function.

Sharpe ratio

$$\begin{cases} s_{p_t} \geq 4 \rightarrow reward = +10\\ 1 < s_{p_t} < 4 \rightarrow reward = +4\\ 0 < s_{p_t} \leq 1 \rightarrow reward = +1\\ s_{p_t} = 0 \rightarrow reward = 0\\ 0 < s_{p_t} \leq -1 \rightarrow reward = -1\\ -1 < s_{p_t} < -4 \rightarrow reward = -4\\ s_{p_t} \leq -4 \rightarrow reward = -10 \end{cases}$$

Profit function


$$\begin{cases} g_{profit} > 0 \rightarrow reward = 1\\ g_{profit} = 0 \rightarrow reward = 0\\ g_{profit} < 0 \rightarrow reward = -1 \end{cases}$$

Experimental Data and Results

Average performance over the 10 trading periods.

Trading system	Avg. return (%)	Max. return (%)	Min. return (%)	St. dev.
Profit D-DQN	3.74	21.31	-10.74	4.87
Profit DD-DQN	4.85	17.34	-8.49	5.10
ProfitDQN	2.32	22.59	-17.97	7.93
Sharpe D-DQN	5.81	26.14	-5.64	5.26
Sharpe DD-DQN	3.04	13.03	-8.49	3.81
Sharpe DQN	1.83	15.80	-9.29	5.46

Double Deep Q-learning System with Sharp reward function

Conclusions and Future Work

- Positive return
- Limitations
- To study the impact of social media and incorporating news and public opinion into the Deep Reinforcement Learning approach
- Secure and trustworthy anomaly detection system