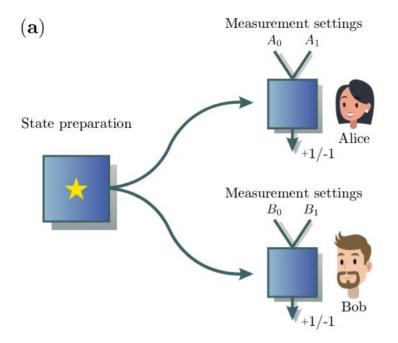
Setting up experimental Bell test with reinforcement learning

A. Melnikov, P. Sekatski, N. Sangouard

- A Bell state is a maximally entangled state
- The Bell inequality shows that no local variables exist in QM \rightarrow nonlocality
- (which has been shown to be a valuable resource when it comes to performing some quantum information tasks in device-independent way)
- Clauser, Horne, Shimony, Holt (CHSH) test a way to determine how much a state would violate the Bell inequality
- Goal: find setup that would lead to the highest CHSH score

$$|\Psi\rangle = \frac{1}{\sqrt{2}}(|a_1b_1\rangle + |a_2b_2\rangle) \neq |A\rangle \otimes |B\rangle$$



Computing the CSHS score

a, b \rightarrow outcomes of the measurement for Alice and Bob respectively (possible values are +1/-1)

$$\beta = \sum_{x,y=0}^{1} (-1)^{xy} \left(p(a=b|A_x B_y) - p(a \neq b|A_x B_y) \right)$$

 $|\beta| \le 2\sqrt{2}$

Action	Elements name	Elements description	Elements notation
1 - 2	Two-mode squeezing: TMS_{12}, TMS_{23}	$U_{\rm TMS} = \exp\left(g(a_1^{\dagger}a_2^{\dagger} - a_1a_2)\right)$	$\xrightarrow{g \sim 0.1} \xrightarrow{g \rightarrow 0.1}$
3 - 4	Two-mode squeezing, small squeezing: TMS'_{12} , TMS'_{23}	$U_{\rm TMS'} = \exp\left(10^{-4}g(a_1^{\dagger}a_2^{\dagger} - a_1a_2)\right)$	$\xrightarrow{g < 0.1} \xrightarrow{g < 0.1}$
5 - 6	Beam splitters: BS_{12}, BS_{23}	$U_{\rm BS} = \exp\left(i\theta(a_1^{\dagger}a_2 + a_2^{\dagger}a_1) ight)$	
7 – 9	Single-mode squeezing, real value part: SMS_1^{Re} , SMS_2^{Re} , SMS_3^{Re}	$U_{\mathrm{SMS^{Re}}} = \exp\left(\frac{g}{2}\left(a^2 - (a^{\dagger})^2\right)\right)$	-SMS ^{Re} -SMS ^{Re} -SMS ^{Re} -SMS ^{Re}
10 - 12	Single-mode squeezing, imaginary value part: SMS ^{Im} ₁ , SMS ^{Im} ₂ , SMS ^{Im} ₃	$U_{\rm SMS^{1m}} = \exp\left(-i\frac{g}{2}\left(a^2 + (a^{\dagger})^2\right)\right)$	- <u>SMS</u> Im - <u>SMS</u> Im - <u>SMS</u> Im - <u>SMS</u> Im
13 - 16	$\begin{array}{l} \text{Displacements,}\\ \text{real value part:}\\ \text{D}_{A_0}^{\text{Re}}, \text{D}_{A_1}^{\text{Re}}, \text{D}_{B_0}^{\text{Re}}, \text{D}_{B_1}^{\text{Re}} \end{array}$	$U_{\mathrm{D}^{\mathrm{Re}}} = \exp\left(lpha(a^{\dagger}-a) ight)$	$\begin{array}{c} \begin{array}{c} & & \\ & & \\ \hline & & \\ \end{array} \end{array} \begin{array}{c} & \\ \hline & \\ \end{array} \end{array} \begin{array}{c} \\ \hline & \\ \end{array} \end{array} \begin{array}{c} \\ \hline & \\ \end{array} \end{array} \begin{array}{c} \\ \hline \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \hline \\ \end{array} \end{array} \begin{array}{c} \\ \hline \end{array} \end{array} \begin{array}{c} \\ \hline \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \end{array} \end{array} \end{array} $ \end{array}
17-20	Displacements, imaginary value part: $D_{A_0}^{Im}, D_{A_1}^{Im}, D_{B_0}^{Im}, D_{B_1}^{Im}$	$U_{\mathrm{D^{Im}}} = \exp\left(i\alpha(a^{\dagger}+a) ight)$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $

n bosonic modes initialised in the ground state, that are then manipulated by single-mode operations

State preparation is complete if the desired outcome of *click* or *no click* (which is realised with probabilities p_{click} and $p_{no click}$ respectivelly) are observed on *n-m* detectors

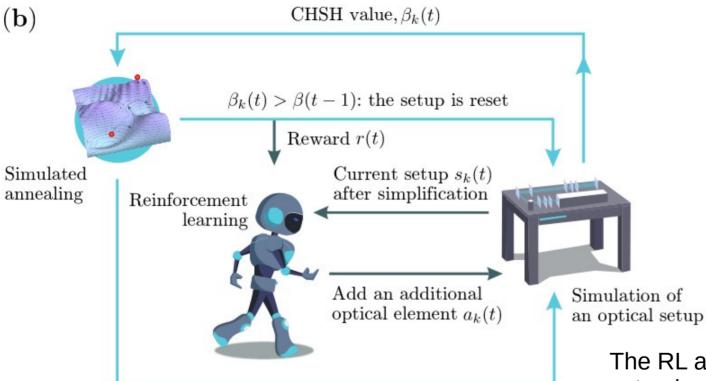
The remaining m modes are shared between Alice and Bob who locally apply a combination of operations depending on the measurement settings

All modes are measured

The examples included in the paper would consider the cases $\{n,m\} = \{3,2\}$ and $\{2,2\}$

Why machine learning?

- Brute-force approach wouldn't be as efficient in optimising all the parameters (the total number of parameters must also account for the measurement settings)
- If the elements include imperfections, the set of transformations which is accessible by combining individual elements is in general unknown
- Brute-force search is unsuitable when one of the goals is to keep the number of elements low



 $\beta_k(t) \leq \beta(t-1)$: new parameters for the setup If it lasts for too many iterations — reset the setup 2 levels of the RL task:

1) Top level \rightarrow specifies the order in which the elements are applied to the modes $\rightarrow RL$ agent

2)Second level → specifies the value of the parameters for each element → Simulated annealing optimization algorithm

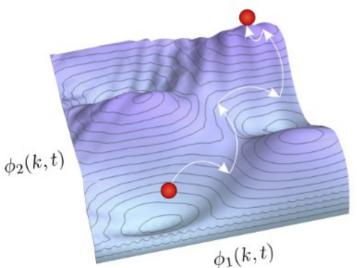
The RL agent interacts with the setup in rounds/interaction steps *k*; a sequence of interaction steps that leads to a feedback signal/reward is called a trial *t*.

 $k=1 \rightarrow \text{empty optical setup}$

Simulated annealing algorithm

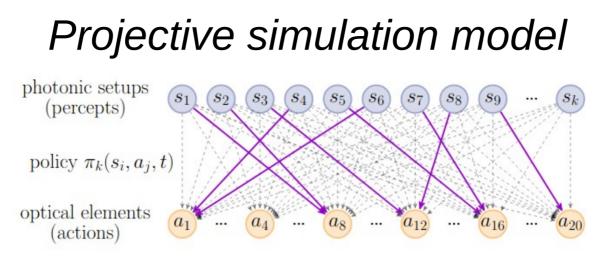
SA emulates the physical process where a solid system is slowly cooled so that eventually its structure is "frozen" at a minimum energy configuration

An optimization tool for the RL agent to design better experimental setups Set the parameters g, θ, α for each setup $s_k(t)$ so that β is maximised; Trials marked with t with $l_k(t) \leq k \leq k_{max}$ interaction steps \rightarrow SA is optimising parameters $\Phi(k, t) = (\phi_1(k, t), \dots, \phi_l(k, t))$ in *l*-dim space



Visualization for two-parameter optimization; height corresponds to CHSH value

Simulated annealing algorithm $\Phi(k,t) = (\phi_1(k,t),\ldots,\phi_l(k,t))$ $\phi_{m(i)}(k,t) \to \phi_{m(i)}(k,t) + \xi_i$ $T_i(t) = \frac{N(t)}{i} T_{min}, T_{min} = 0.001$ Calculate $\beta_k^{(i)}$: Effective temperature of SA, If $\beta_k^{(i)} > \max_k \beta_k(t) : \beta_k(t) \leftarrow \beta_k^{(i)}$ N(t) = 95+5t+ reward, trial t ends else if $\beta_k^{(i)}(t) < \beta_{\iota}^{(i)}(t)$: revert the change in $\phi_{m(i)}(k,t)$ with probability $p_k^{(i)}(t) = 1 - \exp\left(-\frac{\beta_k(t) - \beta_k^{(i)}(t)}{T_i(t)}\right)$ if i < N(t): iteration i + 1 begins else if i = N(t) interaction step k ends and setup is reset to $s_0(t+1)$

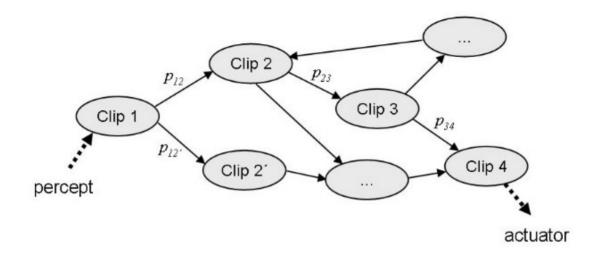


The RL agent is a projective simulation agent which is represented by a two-layer PS network:

a layer of clips representing the states $s_k(t)$ a layer of clips representing the actions $a_k(t)$ weights $h_k(s, a, t)$ connecting the clips which fully define the policy:

$$\pi_k(s, a, t) = \frac{\exp h_k(s, a, t)}{\sum_{a'} \exp h_k(s, a', t)}$$

- Projective simulation allows the agent to project itself into future situations based on previous experience
- So it can learn not only from previous experience but also from *fictitious experience*
- Fragments of previous experience *clips* can be stored in a neural-network-type structure where a perceptual input trigger causes a probabilistic random walk through *episodic memory space*



- i) Encounter percept $s \in S$ with probability $P^{(t)}$ which triggers excitation of clip $c \in C$ w/ probability I(c|s)
- ii) Random walk through clip space w/ probabilities $p^{(t)}(c'|c)$
- iii) Exit of memory through activation of action a described by a function O(a|c)

• Percept space

 $s = (s_1, \ldots, s_N) \in S_1 \times \cdots \times S_N = S, s_i = 1, \ldots, |S_i|$ a cartesian product of sets, reflecting the compositional/categorical structure of percepts/objects (ex. colour, shape, size etc)

• Actuator space

 $a = (a_1, \ldots, a_M) \in A_1 \times \cdots \times A_M = A, a_i = 1, \ldots, |A_i|$ reflects the degrees of freedom of the agent's actions

clip ~ *sequence of remembered real or fictitious percepts and actions*

Clip space

 $c = (c_1, \ldots, c_L) \in C; c_i \in \mu(S) \bigcup \mu(A); L$ is the lenght of the clip

• Emotion space consist of tags attached to transitions between different clips in episodic memory/remembered rewards/internally defined while rewards are external parameters

Projective simulation model

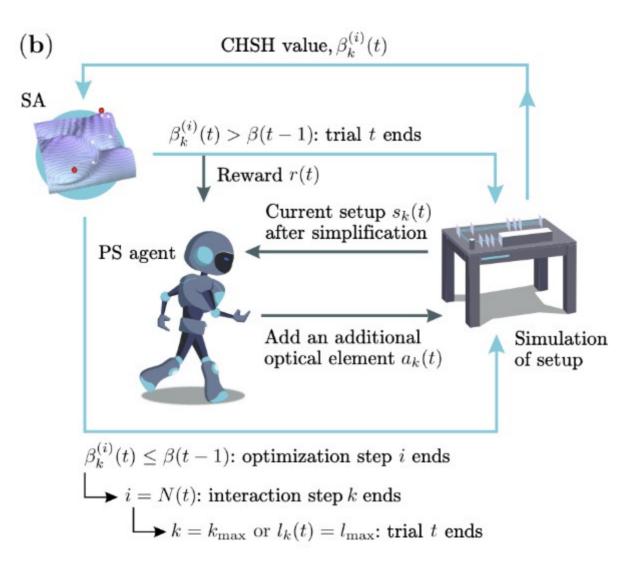
Policy is updated after each iteration step:

$$h_{k+1}(s, a, t) = h_k(s, a, t) - \gamma_{PS}(h_k(s, a, t) - 1) + g_{k+1}(s, a, t)r(t)$$

initial weights:
$$h_1(s, a, 1) = 1$$

 $g_{k+1}(s, a, t) = 1$ if the set (s, a) appeared in step k
otherwise $g_{k+1}(s, a, t) = (1 - \eta_{PS})g_k(s, a, t), \eta_{PS} = 0.3$
 $\gamma_{PS} = 10^{-3}$; dampting rate, responsible for forgetting

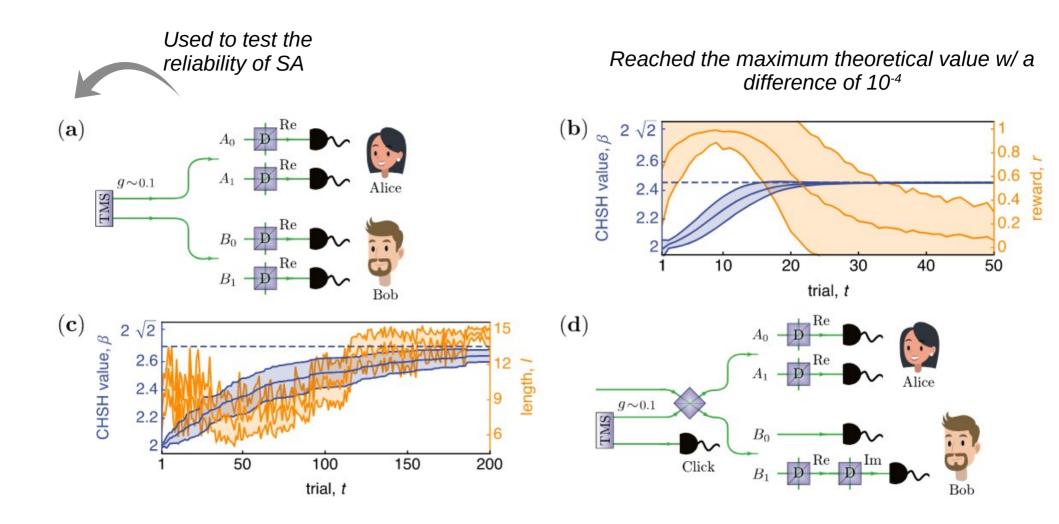
$$\pi_k(s, a, t) = \frac{\exp h_k(s, a, t)}{\sum_{a'} \exp h_k(s, a', t)} \xrightarrow{\text{photonic setups}}_{\text{(percepts)}} \underbrace{s_1 \ s_2 \ s_3 \ s_4 \ s_5 \ s_6 \ s_7 \ s_8 \ s_9 \ \cdots \ s_k}_{\text{(percepts)}}$$

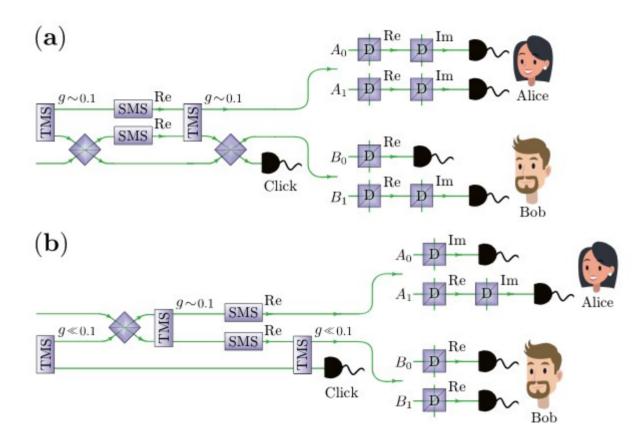


Results

Setup	Setup description	β	$p_{ m click}$	Setup parameters
Fig. 2(a)	$\{\text{TMS}_{12}, \mathbf{D}_{A_0}^{\text{Re}}, \mathbf{D}_{A_1}^{\text{Re}}, \mathbf{D}_{B_0}^{\text{Re}}, \mathbf{D}_{B_1}^{\text{Re}}\}$	2.4546	deterministic	$\{0.7350, -0.1636, 0.5240, 0.1562, -0.5276\}$
Fig. 2(d)	$\{\text{TMS}_{23}, \text{ BS}_{12}, \text{D}_{A_0}^{\text{Re}}, \text{D}_{A_1}^{\text{Re}}, \text{D}_{B_1}^{\text{Re}}, \\ \text{D}_{B_1}^{\text{Im}}\}$	2.6401	2.2×10^{-3}	$\{0.0472, -0.7609, 0.2855, -0.4733, -0.0087, -0.6572\}$
Fig. 3(a)	$ \{ \text{TMS}_{12}, \text{ BS}_{23}, \text{ SMS}_{1}^{\text{Re}}, \text{ SMS}_{2}^{\text{Re}}, \\ \text{TMS}_{12}, \text{ BS}_{23}, D_{A_{0}}^{\text{Re}}, D_{A_{0}}^{\text{Im}}, D_{A_{1}}^{\text{Re}}, \\ D_{A_{1}}^{\text{Im}}, D_{B_{0}}^{\text{Re}}, D_{B_{1}}^{\text{Re}}, D_{B_{1}}^{\text{Im}} \} $	2.7242	$2.9 imes 10^{-4}$	$ \{ -0.0855, -0.1279, -0.1247, -0.1572, \\ 0.1047, 0.0746, -0.1896, -0.0437, 0.5477, \\ 0.0153, -0.1704, 0.6167, 0.0157 \} $
the same	the same	2.7424	2.6×10^{-5}	$\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Fig. 3(b)	$\{\text{TMS}'_{23}, \text{ BS}_{12}, \text{ TMS}_{12}, \text{ SMS}_{1}^{\text{Re}}, \\ \text{SMS}_{2}^{\text{Re}}, \text{TMS}'_{23}, \text{D}_{A_{0}}^{\text{Im}}, \text{D}_{A_{1}}^{\text{Re}}, \text{D}_{A_{1}}^{\text{Im}}, \\ \text{D}_{B_{0}}^{\text{Re}}, \text{D}_{B_{1}}^{\text{Re}}\}$	2.7454	1.1×10^{-9}	$ \{ 0.3483, 0.7059, 0.0025, 0.1221, \\ -0.1717, -0.0306, -0.1822, -0.0192, \\ 0.6047, -0.1967, 0.6131 \} $

 \uparrow \rightarrow designed by the agent





This presentation was based on the following article:

A. Melnikov, P. Sekatski, N. Sangouard, "Setting up experimental Bell test with reinforcement learning", Phys. Rev. Lett. **125**, 160401 (2020)

with additional information from:

H. Briegel, G. Cuevas, *Projective simulation for artificial intelligence*, Sci. Rep. 2, **400** (2012)

D. Bertsimas, J. Tsitsiklis, *Simulated annealing*, Statistical Science **8** 10-15 (1993)