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* A Bell state is a maximally entangled state

* The Bell inequality shows that no local variables exist in QM -
nonlocality

* (which has been shown to be a valuable resource when it comes to
performing some quantum information tasks in device-independent
way)

* Clauser, Horne, Shimony, Holt (CHSH) test — a way to determine how
much a state would violate the Bell inequality

* Goal: find setup that would lead to the highest CHSH score
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5 Computing the CSHS score

a, b - outcomes of the
measurement for Alice and Bob

respectively (possible values are
+1/-1)
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Elements description

| Elements notation

Two-mode squeezing:
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Beam splitters:
BSi2, BSas
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Displacements,
real value part:
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Upre = exp (ala’ — a))
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Displacements,
imaginary value part:
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n bosonic modes initialised in the ground
state, that are then manipulated by single-
mode operations

State preparation is complete if the desired
outcome of click or no click (which is
realised with probabilities p_., and p

respectivelly) are observed on n-m
detectors

no click

The remaining m modes are shared
between Alice and Bob who locally apply a
combination of operations depending on
the measurement settings

All modes are measured

The examples included in the paper would
consider the cases {n,m} = {3,2} and {2,2}



Why machine learning?

* Brute-force approach wouldn’t be as efficient in optimising
all the parameters (the total number of parameters must
also account for the measurement settings)

* |f the elements include imperfections, the set of
transformations which is accessible by combining individual
elements is in general unknown

* Brute-force search is unsuitable when one of the goals is to
keep the number of elements low



2 levels of the RL task:

(b) CHSH value, §(t) 1) Top level — specifies
the order in which the
elements are applied

Be(t) > B(t — 1): the setup is reset to the modes - RL
agent
l Reward r(f) 9
Simulated Current setup s (t) 2)Second level -
annealing Heinfmlrcmn?nt i’ after simplification spe cifies the value of
earning

the parameters for

| each element -

'Y Sy - Simulated annealin
Add an additional Simulation of .. . . 9
optical element a;(t) an optical setup optimization algorithm

The RL agent interacts with the
Br(t) < B(t — 1): new parameters for the setup S_etup n rounds/mteractlo_n steps
If it lasts for too many iterations — reset the setup K , d sequence of interaction steps

that leads to a feedback

signal/reward is called a trial t.

k=1 - empty optical setup



Simulated annealing algorithm

SA emulates the physical process where a solid system is slowly cooled so that
eventually its structure is “frozen” at a minimum energy configuration

An optimization tool for the RL agent to design better experimental setups
Set the parameters g, 0, a for each setup si(t) so that § is maximised;
Trials marked with ¢ with [ () < k < ke interaction steps —

SA is optimising parameters ®(k,t) = (¢1(k,t),...,¢1(k,t)) in [-dim space

Visualization for two-parameter optimization,
height corresponds to CHSH value




Simulated annealing algorithm

(I)(kv t) — (gbl(ka t)a R ¢l(k7 t))

Calculate 5,8) : Ti(t) = TTmm’ Linin = 0.001

(i) (4) Effective temperature of SA,
If 5,7 > maxy, i (t) : Br(t) < B, N(t) = 95+5t,

. + reward, trial t ends
else if B\ (t) < B (¢) :
revert the change in ¢,,(;)(k,t) with probability
; Br(t) — 5, (1)
py) (t) = 1 — exp ( T,(t)’“

if © < N(t): iteration 7 4+ 1 begins
else if ¢ = N(¢) interaction step k ends and setup is reset to sg(t + 1)




Projective simulation model

photonic setups
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policy mi(si, aj,t)

optical elements
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The RL agent is a projective simulation agent which is represented by a two-layer PS
network:

a layer of clips representing the states si(t)

a layer of clips representing the actions ag(t)
weights hy (s, a,t) connecting the clips which fully define the policy:

exp hi(s,a,t)
> .. exphi(s,a’,t)

(s, a,t) =



* Projective simulation allows the agent to project itself into
future situations based on previous experience

* So It can learn not only from previous experience but also
from fictitious experience

* Fragments of previous experience — clips — can be stored in
a neural-network-type structure where a perceptual input
trigger causes a probabilistic random walk through episodic

memory space



percept

i) Encounter percept s € S with probability P(*) which triggers excitation of
clip ¢ € C w/ probablity I(c|s)
ii) Random walk through clip space w/ probabilities p*)(c'|c)

iii) Exit of memory through activation of action a described by a function O(alc)



* Percept space
s=(81,...,8N) ES1 X xSy=8,8,=1,...,|5]
a cartesian product of sets, reflecting the compositional /categorical
structure of percepts/objects (ex. colour, shape, size etc)
* Actuator space
a = (al,...,aM) c A x--- XAM:A,CLZ':L...,‘AZ"
reflects the degrees of freedom of the agent’s actions
clip ~ sequence of remembered real or fictitious percepts and
actions
* Clip space
c=(c1,...,cp) € Csc; € u(9) U,LL(A); L is the lenght of the clip
* Emotion space
consist of tags attached to transitions between different clips in
episodic memory/remembered rewards/internally defined while
rewards are external parameters



Projective simulation model

Policy is updated after each iteration step:

hk—|—1(57 a, t) — hk(sa a, t) o /yPS(hk(Sa a, t) o 1) + gk-l—l(sa a, t)’l“(t)

initial weights: hi(s,a,1) =1
gr11(s,a,t) = 1 if the set(s, a)appeared in step k
otherwise gp11(s,a,t) = (1 —nps)gr(s,a,t),nps = 0.3
vpg = 107 °:dampting rate, responsible for forgetting

photonic setups
(percepts)

S1) (52) (83) (S4) (85) (86) (S7) (S8) |S9) - (8K

eXp hk (87 a’7 t) policy mi(s;, aj,t)
/
Za’ eXp hk (87 a, t) optical elements

(actions)

wk(s,a,t) =




CHSH value, 5. (1)

;’33)(#] > 3(t — 1): trial ¢ ends

A\

Reward r(t)

Current setup s;(t)
after simplification

-
Add an additional Simulation
optical element a;(t) of setup

B (t) < B(t —

1): optimization step i ends

|—r i = N(t): interaction step k ends
|—b k = kmax or li(f) = lnax: trial ¢ ends



Results

Setup Setup description 15 Pelick Setup parameters
Fig. 2(a) | {TMS;2, DE{E, Dﬁf, D%ﬁ, D%‘f 2.4546 | deterministic | {0.7350, -0.1636, 0.5240, 0.1562,
-0.5276}
Fig. 2(d) | {TMSa3, BSi2, D¢, D¢, DE°, | 2.6401 | 22 x 107% | {0.0472, -0.7609, 0.2855, -0.4733,
D} -0.0087. -0.6572}
Fig. 3(a) | {TMSo. BSa;, SMSTe, SMSRe, | 2.7242 | 2.9 x 107 | {-0.0855, -0.1279, -0.1247, -0.1572,
TMS12, BSg3, D¢, D", DY°, 0.1047, 0.0746, -0.1896, -0.0437, 0.5477,
Dﬁlll} DE‘E* D%?a DES'H: 0.0153, -0.1704, 0.6167, 0.0157}
the same | the same 2.7424 | 2.6 x 107° {-0.2465, -0.0131, -0.1212, -0.1341,
ﬁ 0.2585, 0.0265, -0.1608, 0.0396, 0.6276,
-0.0137. -0.2018, 0.5886, -0.0315}
Fig. 3(b) | {TMS),, BSi2, TMS;2, SMSHe, | 2.7454 | 1.1 x 1077 {0.3483, 0.7059, 0.0025, 0.1221,
| SMS§¢, TMS),, DI DRe, Dl 01717, -0.0306, -0.1822, -0.0192,
2 0.6047, -0.1967, 0.6131}
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Used to test the

{\reliability of SA
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This presentation was based on the following article:

A. Melnikov, P. Sekatski, N. Sangouard, "Setting up experimental Bell test
with reinforcement learning”, Phys. Rev. Lett. 125, 160401 (2020)

with additional information from:

H. Briegel, G. Cuevas, Projective simulation for artificial intelligence,
Sci. Rep. 2, 400 (2012)

D. Bertsimas, J. Tsitsiklis, Simulated annealing, Statistical Science 8 10-15
(1993)
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