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Abstract

We describe a learning-based approach to hand-
eye coordination for robotic grasping from
monocular images. To learn hand-eye coordi-
nation for grasping. we trained a large convo-
lutional neural network to predict the probabil-
ity that task-space motion of the gripper will re-
sult in successful grasps, using only monocular
camera images and independently of camera cal-
ibration or the current robot pose. This requires
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Binocular vision

oropter

You cannot collect depth information with
only one eye!



Comparison to similar
works

e Monocular visual input
¢ No calibration
¢ No communication between robot and imaging

module



Algorithm

Component 1: Convolutional neural network g(I;, v;)
outputs the probability that,
given an input image I;

a motion command v; will lead to a successful grasp



Algorithm

Component 2: Servoing mechanism f(I;)
uses the image input I;
to choose an action for the robotic hand.
It calls g(I;, v;) internally!



Algorithm

Algorithm 1 Servoing mechanism f(I;)

: Given current image I, and network g.
: Infer v} using g and CEM.
: Evaluate p = g(I,, 0)/g(L,, vi).
: if p > 0.9 then
Output (), close gripper.
: elseif p < 0.5 then
Modify v} to raise gripper height and execute v;.
else
Execute v}.
: end if

SOCEND UL W -

CEM = vector sampling mechanism

g(I:,0) is the probability of a successful grasp with no motion
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Algorithm
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Propose a motion
command
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Lift gripper up



Propose new motion
command
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Propose new motion
command






Neural networ
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A traditional layer sequence

e Conv + Pooling + ReLU
¢ Following a well established pattern



Input

e Image with gripper 472x472

¢ Image without gripper 472x472

¢ 5D Vector encoding translation and
rotation
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Training

Generating training data

1. The robot executes a motion command
T times
«e2<T <10
e T-th command is always a grasp
attempt
2. After grasp attempt, the grasp success
is evaluated
3. A data point is generated: (I;, pr — ps, 1)
® p, is the gripper position at step x



Training

Generating training data

e First 50% of samples are generated
with random motions

¢ The rest are generated using the last
trained model with previous data

e Model is re-trained 4 times during data

generation



Observing the algorithm as
RL

e The CNN g(I;,¢;) is approximating the
Q-function defined by the policy of the
servoing mechanism (when T=2)

= Note: Q-function = action-value
function



Evaluating grasp success

1. Measure distance between fingers. If
more than 1cm, a successful grip is
considered

2. Make an image without the gripper and
subtract from the initial image. After a
successful grip, the difference should
be 0

Data point: (It, pr — pt,1)

l = 1 given a successful grip

! = 0 given an unsuccessful grip



Visualize data generation

T=3
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Visualize data generation
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Positive data point

Note that p3 is the grasp itself!



Negative data point
T=3

Note that p3 is the grasp itself!



Results

1. Presented algorithm vs random gripper
motion



Results

2. Presented algorithm vs hand-designed
system

a.k.a. using sensors to gather depth
information objects are localized and the
calibrated gripper is sent to that location



Results

2. Presented algorithm vs open loop

a.k.a. using the CNN to predict successful
grasp probability and then directly attempt

grasping

a.k.a the same as the presented algorithm,
without the continuous servoing



Results

without first 10 first 20 first 30
replacement (N = 40) (N = 80) (N = 120)
random 67.5% 70.0% 72.5%
hand-designed | 32.5% 35.0% 50.8%
open loop 27.5% 38.7% 33.7%
our method 10.0% 17.5% 17.5%
with failure rate (N = 100)
replacement

random 69%

hand-designed | 35%

open loop 43%

our method 20%

Table 1. Failure rates of each method for each evaluation condi-
tion. When evaluating without replacement, we report the failure
rate on the first 10, 20, and 30 grasp attempts, averaged over 4
repetitions of the experiment.

Image from paper



Results

without first 10 first 20 first 30
replacement (N = 40) (N = 80) (N = 120)
random 67.5% 70.0% 72.5%
hand-designed | 32.5% 35.0% 50.8%
open loop 27.5% 38.7% 33.7%
our method 10.0% 17.5% 17.5%
with failure rate (N = 100)
replacement

random 69%

hand-designed | 35%

open loop 43%

our method 20%

Table 1. Failure rates of each method for each evaluation condi-
tion. When evaluating without replacement, we report the failure
rate on the first 10, 20, and 30 grasp attempts, averaged over 4
repetitions of the experiment.

Image from paper



Evaluating results
improvement with the
increase of trainging data

without first 10 | first 20
replacement N=40 | N=80
12%: M = 182,249 52.5% 45.0% 47.5%
o: M = 407,729 30.0% 32.5% 36.7%
50%: M = 900,162 25.0% 22.5% 25.0%
100%: M = 2,898,410 10.0% 17.5% 17.5%

Table 2. Failure rates of our method for varying dataset sizes,
where M specifies the number of images in the training set, and
the datasets correspond roughly to the first eighth, quarter, and
half of the full dataset used by our method. Note that performance
continues to improve as the amount of data increases.
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Non-trivial strategies for
grasping

Figure 9. Grasps chosen for objects with similar appearance but
different material properties. Note that the soft sponge was
grasped with a very different strategy from the hard objects.
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Non-trivial strategies for
grasping

Figure 10. Examples of difficult objects grasped by our algo-
rithm, including objects that are translucent, awkardly shaped,
and heavy.
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Future work

e Diversifying the training set for
increased generalization

e Integration of reinforcement learning
to allow the system more "creativity"

¢ Adapting the method to a real-life
scenario with varying environments

and tasks for the robots



Sampling motion vectors

e Perform 3 times:

= sample 64 vectors
= pick the 6 with highest grasp
probability (top 10%)
= fit a Gaussian distribution to the
picked ones
¢ The first 64 samples are from a zero-
mean Gaussian centered on the
gripper position



Thanks for the
attention



