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THE PROBLEM

• Astronomically large state space (4.2 x 1012  different states for 3x3x3 rubik cube)

• Single player game

• Only single state is considered solved

• A sequence of random moves is unlikely to end in the solved state (sparse reward 
environment)

• Only recently derived methods can solve the cube in minumum amount of moves 
from any starting configuration

• As the length of the edges and number of dimensions increase, complexity 
increases exponentially

• No clear way to apply current DPI algorithms such as AlphaZero or ExIt to sparse-
reward environments such as the Rubik’s Cube. 

• Approximating the value function is very difficult because even a naive Monte-
Carlo approach would not work since it will never encounter the solved state. 
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RELATED WORK

• In 2014, it was shown that any valid cube can be optimally solved with at 
most 26 moves in the quarter-turn metric, or 20 moves in the half-turn metric

• Algorithms used by machines to solve the Rubik’s Cube rely on hand-
engineered features and group theory to systematically find solutions 
(Kociemba)

• In 1985 it was shown that iterative deepening A* could be used to solve the 
Rubik’s Cube (combined with pattern databases) (Korf)

• Supervised learning with hand-engineered features (Brunetto & Trunda, 2017) 

• Attempts have been made to solve the Rubik’s Cube through evolutionary 
algorithms (Smith et al., 2016; Lichodzijewski & Heywood, 2011) 

• Approximate Policy Iteration [Bertsekas & Tsitsiklis, 1995]

• ExIt (Expert Iteration) [“Thinking Fast and Slow with Trees and Deep Learning”, 
Anthony et al. 2017]
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METHODS
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THE CUBE

• The Rubik’s Cube consists of 26 smaller cubes called cubelets.

• There are 54 stickers in total

• Each sticker is uniquely identifiable based on the type of cubelet the 
sticker is on and the other sticker(s) on the cubelet. 

• The dimensionality of the representation can be reduced by 
focusing on the position of only one sticker per cubelet

• Ignore the redundant center cubelets and only store the 24 possible 
locations for the edge and corner cubelets.

• This results in a 20x24 state representation

• Moves are represented using face notation: F,	B,	L,	R,	U,	D

• A clockwise rotation is represented with a single letter, whereas a 
letter followed by an apostrophe represents a counter-clockwise 
rotation

• At each timestep, t, the agent observes a state st ∈	S	and takes an 
action at ∈	A	with A	:=	{F,	F’,	.	.	.	,	D,	D’}

• After selecting an action, the agent observes a new st+1	=	A(st,	at)	
and receives a scalar reward, R(st+1), which is 1 if st+1 is the goal state 
and −1 otherwise.
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METHODS
Approximate Policy Iteration (Brief Overview)
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Taken from “Error Bounds for Approximate Policy Iteration”,
Remi Munos



METHODS
Autodidactic Iteration 

• The sampling distribution is generated by starting from the solved state and 
randomly taking actions

• Cubes closer to the starting state are weighted more heavily – a loss 
weight 1	/	D(xi)	is assigned to each sample, where D(xi)	is the number of 
scrambles it tool to generate it
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METHODS
Autodidactic Iteration 
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METHODS
Monte-Carlo Tree Search (Brief overview)

• Every node represents a state in the game

• Root node represents the initial state

• PLAYOUT is a sequence of moves that start from the current node and end in 
games’s terminal state

• A node is VISITED if a PLAYOUT was started at least once in it

• A node is FULLY EXPANDED if all it’s children are VISITED 

• A node is TERMINAL if it has no children and the game cannot continue from it

• A node is a LEAF if a PLAYOUT has just started for it

• Simulation always starts at the node that has not been visited previously

• During simulation the moves are chosen with respect to a ROLLOUT POLICY 
FUNCTION

• Nodes chosen by ROLLOUT POLICY FUNCTION during simulation are not considered 
VISITED

• BACKPROPAGATION is a traversal back from the leaf node (where simulation 
started) up to the root

• Ultimate goal is to find the most promising next move

• Simulates the game many times
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METHODS
Monte-Carlo Tree Search (Brief overview)
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METHODS
Monte-Carlo Tree Search (Brief overview)

• Node statistics
• Total number of visits N(s)
• Total simulation reward Q(s)

• BACKPROPAGATION updates N(s) and Q(s)

• Exploitation follows nodes with high Q(s), exploration nodes with low N(s)

• Upper Confidence Bound applied to trees (UCT) is a function that let us choose the next node 
among visited nodes to traverse through

𝑈𝐶𝑇 𝑠, 𝑠! = " #!
$(#!)

+ 𝑐 '()($ # )
$(#!)

• Node maximizing UCT is the one to follow during Monte Carlo Tree Search tree traversal

• In competitive games Q(si)	is always computed relative to player who moves at node i
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METHODS
Monte-Carlo Tree Search (Brief overview)
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METHODS
Solver (Asynchronous Monte Carlo Tree Search augmented with trained neural network fθ )

1. A search tree is build iteratively beginning with starting state T =	{	s0	}

2. Simulated traversals are performed until reaching a leaf node of T

3. Each state has a memory attatched to it:
1. Ns(a)	– number of times action ‘a’ is taken from state ’s’
2. Ws(a)	– the maximum value of action ‘a’ from state ‘s’
3. Ls(a)	– virtual loss for action ‘a’ from state ‘s’
4. Ps(a)	– the prior probability of action ‘a’ from state ‘s’

4. Every simulation starts from the root node and iteratively selects actions by following a tree 
policy until an unexpanded leaf node, sT , is reached.

5. Once a leaf node, sτ	, is reached, the state is expanded by adding the children of sτ	,	
{A(sτ	,	a),	∀a	∈	A}, to the tree T

6. Next, the value and policy are computed: (vsτ	,	psτ	)	=	fθ (sτ	)	and the value is backed up on 
all visited states in the simulated path

7. The simulation is performed until either sτ	 is the solved state or the simulation exceeds a 
fixed maximum computation time. 

8. If sτ	 is the solved state, the tree is expanded, adding all children of any unexplored states

9. Breadth-first search is performed to find the shortest path from starting state to the solution
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METHODS
Solver details

• (Step 4) The tree policy proceeds as follows: 

For each timestep t, an action is selected by choosing At=	argmax	a Ust(a)	+	Qst(a)	
where

Ust (a)	=	c	Pst(a)	
∑!"(#$()*)
(+,(#$ ) )

Qst(a)	=	Wst(a)	−	Lst(a)

Lst(At)	←	Lst(At)	+	ν

• (Step 5) Children updates:

For 0	≤	t	≤	τ	, the memories are updated:

Wst(At)	←	max	(Wst(At),	vsτ)

Nst(At)	←	Nst(At)	+	1

Lst(At)	←	Lst(At)	−	ν
• Unlike other implementations of MCTS, only the maximal value encountered along the tree is 

stored, not the total value. This is because the Rubik’s Cube is deterministic and not 
adversarial 
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WALK THROUGH
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WALK THROUGH
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WALK THROUGH
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WALK THROUGH
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RESULTS

• Kociemba solved each cube in under a second, while DeepCube had a median solve time of 10 minutes.
• Although DeepCube has a much higher variance in solution length, it was able to match or beat Kociemba

in 55% of cases.
• BFS removes any trivial cycles in the path such as a move followed by its inverse, but it also improves solution 

lengths by finding a slightly more efficient path between states that are within 3 moves of each other. 
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RESULTS

• The median solve length for both DeepCube and Korf is 13 moves, and DeepCube matches the optimal 
path found by Korf in 74% of cases. 

• The Korf optimal solver requires an average expansion of 122 billion different nodes for fully scrambled cubes
• DeepCube expands an average of only 7,823 nodes with a maximum of 24,175 expanded nodes on the 

longest running sample. 
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DISCUSSION

• DeepCube is based on similar principles as AlphaZero and ExIt
• One is not guaranteed to find a terminal state in the Rubik’s Cube environment and 

therefore may only encounter rewards of -1, which does not provide enough information to 
solve the problem

• DeepCube addresses this by selecting a state distribution for the training set that allows the 
reward to be propagated from the terminal state to other states. 

• The depth-1 BFS used to improve the policy can also be viewed as doing on-policy temporal 
difference learning with function approximation. 

• DeepCube is able to teach itself how to reason in order to solve a complex environment 
with only one positive reward state using pure reinforcement learning. 
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THANK YOU !
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