SOLVING THE RUBIK'S CUBE WITH APPROXIMATE
POLICY ITERATION

Stephen McAleer, Forest Agostinelli, Alexander Shmakov, Pierre Baldi

THE PROBLEM

« Astronomically large state space (4.2 x 1012 different states for 3x3x3 rubik cube)
« Single player game
* Only single state is considered solved

+ A sequence of random moves is unlikely to end in the solved state (sparse reward
environment)

* Only recently derived methods can solve the cube in minumum amount of moves
from any starting configuration

* As the length of the edges and number of dimensions increase, complexity
increases exponentially

* No clear way to apply current DPI algorithms such as AlphaZero or Exlt to sparse-
reward environments such as the Rubik’s Cube.

« Approximating the value function is very difficult because even a naive Monte-
Carlo approach would not work since it will never encounter the solved state.

RELATED WORK

* In 2014, it was shown that any valid cube can be optimally solved with at
most 26 moves in the quarter-turn metric, or 20 moves in the half-turn metric

« Algorithms used by machines to solve the Rubik’s Cube rely on hand-
engineered features and group theory to systematically find solutions
(Kociembaq)

* In 1985 it was shown that iterative deepening A* could be used to solve the
Rubik’'s Cube (combined with pattern databases) (Korf)

« Supervised learning with hand-engineered features (Brunetto & Trunda, 2017)

« Attempts have been made to solve the Rubik’'s Cube through evolutionary
algorithms (Smith et al., 2016; Lichodzijewski & Heywood, 2011)

« Approximate Policy Iteration [Bertsekas & Tsitsiklis, 1995]

« Exit (Expert Iteration) [“Thinking Fast and Slow with Trees and Deep Learning”,
Anthony et al. 2017]

METHODS

(svow 90\.\0/)

(ersT woncy) EXPERT

APPRENTI\CE

THE CUBE

* The Rubik’'s Cube consists of 26 smaller cubes called cubelets.

« There are 54 stickers in total

« Each sticker is uniquely identifiable based on the type of cubelet the
sticker is on and the other sticker(s) on the cubelet.

« The dimensionality of the representation can be reduced by
focusing on the position of only one sticker per cubelet

« Ignore the redundant center cubelets and only store the 24 possible
locations for the edge and corner cubelets.

« This results in a 20x24 state representation
* Moves are represented using face notation: F, B, L, R, U, D

« A clockwise rotation is represented with a single letter, whereas a
letter followed by an apostrophe represents a counter-clockwise
rotation

« At each timestep, t, the agent observes a state s, € S and takes an
action a,e Awith A:={FF,...,D,D’}

« After selecting an action, the agent observes a new s, = A(s, a,)
and receives a scalar reward, R(s.;;), which is 1 if s, is the goal state
and -1 otherwise.

METHODS

Approximate Policy Iteration (Brief Overview)

bles. Instead, we consider the Approximate Policy
Iteration algorithm (Bertsekas & Tsitsiklis, 1996) de-
fined iteratively by the two steps:

e Approzimate policy evaluation: for a given pol-
icy mx, generate an approximation V of the value
function V7™

o Policy improvement: generate a new policy w41
greedy with respect to Vj:

k41 (i) = arg max ;{[r(i, a,5) +7p(i, 2, 5)Vi (5)]
J

These steps are repeated until no more improvement
of the policies is noticed (using some evaluation cri-
terion). Empirically, the value functions V** rapidly
improve in the first iterations of this algorithm, then
oscillations occur with no more performance increase.

Taken from “Error Bounds for Approximate Policy Iteration”,
Remi Munos

METHODS

Autodidactic Iteration

« The sampling distribution is generated by starting from the solved state and
randomly taking actions

« Cubes closer to the starting state are weighted more heavily — a loss
weight 1 / D(x,) is assigned to each sample, where D(x,) is the number of
scrambles it tool to generate it

Algorithm 1: Autodidactic Iteration

Initialization: 0 initialized using Glorot initialization
repeat

X < N scrambled cubes

for z; € X do

for a € Ado

| (vz,(a), Pz, (a)) < fo(A(zi, a))
Yu, < max,(R(A(z;,a)) + vg,(a))
Yp, < argma'xa(R(A(x'i’ a’)) + Vg, (a’))
Y (Yuir Yp,)
0« train(fy, X,Y)

0«0
until iterations = M,

20x 24

4096

2048

512

METHODS

Autodidactic Iteration

’ny(F) ’Ux,(F')

(,a))) forac {U, U, .., F, F

Y }
(,a))) forac{U, U, ..., F F'}
- J

METHODS

Monte-Carlo Tree Search (Brief overview)

« Every node represents a state in the game
« Root node represents the initial state

« PLAYOUT is a sequence of moves that start from the current node and end in
games’s terminal state

« A node is VISITED if a PLAYOUT was started at least once in it

« A node is FULLY EXPANDED if all it's children are VISITED

* A node is TERMINAL if it has no children and the game cannot continue from it
* A nodeis a LEAF if a PLAYOUT has just started for it

« Simulation always starts at the node that has not been visited previously

« During simulation the moves are chosen with respect to a ROLLOUT POLICY
FUNCTION

. \N/gﬁl%s)chosen by ROLLOUT POLICY FUNCTION during simulation are not considered

« BACKPROPAGATION is a traversal back from the leaf node (where simulation
started) up to the root

« Ultimate goalis to find the most promising next move

« Simulates the game many times

O

O

Initial state

0O
O[X

: terminal node

METHODS

Monte-Carlo Tree Search (Brief overview)

all children are marked visited - node is
fully expanded

univisted node

green arrows indicate moves chosen
C according to default policy function

O O @ O O O O

® @ @ @ @ @ ® ® @ ® © @ @ @ @

playout ends
in terminal node

oo '\

SIMULATION RESULT IS PROPAGATED
BACK UNTIL ROOT NODE IS MET

SIMULATION
STARTING NODE

GAME TREE ROOT NODE

10

METHODS

Monte-Carlo Tree Search (Brief overview)

« Node stafistics
Total number of visits N(s)
Total simulation reward Q(s)

+ BACKPROPAGATION updates N(s) and Q(s)
« Exploitation follows nodes with high Q(s), exploration nodes with low N(s)

+ Upper Confidence Bound applied to trees (UCT) is a function that let us choose the next node
among visited nodes to traverse through

UCT(s,s;) = % + e %

* Node maximizing UCT is the one to follow during Monte Carlo Tree Search tree traversal

« In competitive games Q(s,) is always computed relative to player who moves at node i

METHODS

Monte-Carlo Tree Search (Brief overview)

SELECTION EXPANSION SIMULATION BACKPROPAGATION

v
0/1

12

METHODS

Solver (Asynchronous Monte Carlo Tree Search augmented with trained neural network fy)

1. Asearch tree is build iteratively beginning with starting state T = { s, }
Simulated traversals are performed until reaching a leaf node of T

3. Each state has a memory attatched to it:
1. Ns(a) - number of times action ‘a’ is taken from state 's’
2. W,(a) - the maximum value of action ‘a’ from state ‘s’
3. L¢(a) - virtual loss for action ‘a’ from state ‘s’
4. P,(a) - the prior probability of action ‘a’ from state ‘s’

4. Every simulation starts from the root node and iteratively selects actions by following a tree
policy until an unexpanded leaf node, s, is reached.

5. Once aleaf node, s_, isreached, the state is expanded by adding the children of s_,
{A(s,,a),Va€ A}, fothe tree T

6. Next, the value and policy are computed: (v, p,.) =f; (s,) and the value is backed up on
all visited states in the simulated path

7. The simulation is performed until either s is the solved state or the simulation exceeds a
fixed maximum computation time.

8. If s isthe solved state, the tree is expanded, adding all children of any unexplored states

9. Breadth-first search is performed to find the shortest path from starting state to the solution

METHODS

Solver details

+ (Step 4) The tree policy proceeds as follows:

For each timestep t, an action is selected by choosing A; = argmax , Ug(a) + Qg (a)
where

V2ar Nst(ar)
Ust (2) = c Py(a) m

Qst(a) = Wst(a) - Lst(a)
Lst(At) < Lst(At) +v

* (Step 5) Children updates:
For 0 <t <, the memories are updated:

Wst(At) < max (Wst(At)' Vsr)
Nst(Ap) < Ng(A) +1
Lst(At) < Lst(At) —V

« Unlike other implementations of MCTS, only the maximal value encountered along the tree is
stored, not the total value. This is because the Rubik's Cube is deterministic and not

adversarial

WALK THROUGH

—~ O

mithal state

LEAE WWODE R[EATMED
ADEC CVMALDREW
TWITI\AL\ZE

W (1) =0
Us’Q) =0
Ls'() =0

COMPLTE THE VALVE AW0
PoLILY ®ok Se LW .Q@.(sc)

Povr\CY
p VALVLE

LPOATE (\pn’ \N.\Z.E.) TWE
VRaOoR SR DA\ LI\TVES FOR
EACA CHMI\LD O% Se LSI\WG

TCq,

BACKPROPACKATE Seo'S VAWE

(eme~y sTev)

VPDAT E
\Nso(c\) < wwa\ﬂso(a\,\l)
Noo (a) «— Vsela) +4
Lse (o) <«— LSo(a) - »

15

WALK THROUGH

Seo

Sy

e STARY AT RooOTY (So)
e CWOOSE NEXT WOPE LVLR\NG

oxtgww.x\\)s(m) A stq)

e LEAE \VOPE RERCMED Qs‘}

3 Us.(cq = cpsuko\\M§

I\ * NS. (ﬂ\

K Qs (“) = \I‘Js-(&ﬁ - Lsa(q>

D i e~

)

A

*EXPARYD (ADO QUILPREN
«Inrviaitze Ws =0, Ns'=0, Lg=0

e COMOVTE VKWE KNS PoLicy
von s, usywa e (s))

- TWITIIALIZE THE PRION PROBABLLITY
Tow EALM cuilLe o S,

. BRCKPROPAGATE S1's VALLE
Wse (ag) = wax (Ws,lac), V)
. LPOATE
\\\soﬁqc3 = A
Loe(ac) = - v

16

WALK THROUGH

So

Q¢

Sa
e TRAVERSE A PRTH So—™ S\ — S
ENSIVG TV LEAT VePE LS\WG

QV%‘V\QXG\ Us(‘t) + Qs (“\

AT ERCM LEVEL OF TMg TREE

A Seo

/o/ St

2

o =xeave ((App CaLoRED
s TWXTIALIZE \)s)s' = 0, \\)g'= O, Ly'=0
o COMPUNE VUKLVE VD POLY oy

coR Sa VWG s_@qu

s TWNI<ITALLIZE -TVHE PR\O R

PROBABILITY ®ox ExeM CWLE
owr S

o BRCVPROPKRGESE S,'s Vmve

Wey (@) = wox (Ws(ar), \:)

Wsa () = voae (Wsa (o), V)

L PPNYTE
Ns, (ac) =2 Lse(ad)s -2V
Ne (a) =4 Lsy(an) = -V

17

WALK THROUGH

N OAA - A Ak ARARRER AR £
A AN A AN
SoL\Je_p STKYTE
SOLVED STATE
e DO BREADTM-TIRST QE&QC\\/
SUPPOSE THMAT KABTER AN} EXPAND\OG AL CHMILOREN
SIMVLAT \enS WE FIWS P'QW\)

. WE FINP TWE SoLVES SYNTE
SoLveER STve S evees Away ((Mmover)

H wolESs KWAY FrRow SThRRNVG

FROM STARTIN G CoNFT VGLRNTION Quo\—)
CONT\ GLRATIVOW

e ALGOR) THM TERWMNWKTES

18

RESULTS

Solution Length Comparison
15 Scrambles

1,000 Scrambles

'
50 —
n ‘
2 —
§ 40
]
5 IR
S 30| - ;
T e T '
(D) ¢ ‘
g 20 —_— - T i g
5 | __——_______ | ____________‘' ____|
£ — .
I I I 1 I 1
Kociemba DeepCube Naive Kociemba DeepCube Korf

DeepCube

« Kociemba solved each cube in under a second, while DeepCube had a median solve time of 10 minutes.
« Although DeepCube has a much higher variance in solution length, it was able to match or beat Kociemba

in 55% of cases.

« BFS removes any trivial cycles in the path such as a move followed by its inverse, but it also improves solution
lengths by finding a slightly more efficient path between states that are within 3 moves of each other.

19

RESULTS

DeepCube Distribution of Solve Time

I
: ---- Median
0.015 I
=y l
£0.010 :
o I
= 0.005 :
I
I
0.000 :
0 20 40 o0 80 100 120 140 160 180 200 220 240
Seconds
Solver Nodes Seconds Nodes/Sec Mean Solution Length Memory Requirement
Rokicki 1.86E+06 2.74 1.86E+06 20.6 182 GB
Korf 122 billion 40 2E+06 20.6 2GB
DeepCube | 7.823E+03 40 2.1E+03 30.6 1 GB
Kociemba | N/A 0.035 N/A 30.5 30 MB

« The median solve length for both DeepCube and Korf is 13 moves, and DeepCube matches the optimal
path found by Korf in 74% of cases.

« The Korf optimal solver requires an average expansion of 122 billion different nodes for fully scrambled cubes

« DeepCube expands an average of only 7,823 nodes with a maximum of 24,175 expanded nodes on the
longest running sample.

20

DISCUSSION

« DeepCube is based on similar principles as AlphaZero and Exlt

« One is not guaranteed to find a terminal state in the Rubik’s Cube environment and
therefore may only encounter rewards of -1, which does not provide enough information to
solve the problem

+ DeepCube addresses this by selecting a state distribution for the training set that allows the
reward to be propagated from the terminal state to other states.

+ The depth-1 BFS used to improve the policy can also be viewed as doing on-policy temporal
difference learning with function approximation.

+ DeepCube is able to teach itself how to reason in order to solve a complex environment
with only one positive reward state using pure reinforcement learning.

THANK YOU |

