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THE PROBLEM

« Astronomically large state space (4.2 x 1012 different states for 3x3x3 rubik cube)
« Single player game
* Only single state is considered solved

+ A sequence of random moves is unlikely to end in the solved state (sparse reward
environment)

* Only recently derived methods can solve the cube in minumum amount of moves
from any starting configuration

* As the length of the edges and number of dimensions increase, complexity
increases exponentially

* No clear way to apply current DPI algorithms such as AlphaZero or Exlt to sparse-
reward environments such as the Rubik’s Cube.

« Approximating the value function is very difficult because even a naive Monte-
Carlo approach would not work since it will never encounter the solved state.



RELATED WORK

* In 2014, it was shown that any valid cube can be optimally solved with at
most 26 moves in the quarter-turn metric, or 20 moves in the half-turn metric

« Algorithms used by machines to solve the Rubik’s Cube rely on hand-
engineered features and group theory to systematically find solutions
(Kociembaq)

* In 1985 it was shown that iterative deepening A* could be used to solve the
Rubik’'s Cube (combined with pattern databases) (Korf)

« Supervised learning with hand-engineered features (Brunetto & Trunda, 2017)

« Attempts have been made to solve the Rubik’'s Cube through evolutionary
algorithms (Smith et al., 2016; Lichodzijewski & Heywood, 2011)

« Approximate Policy Iteration [Bertsekas & Tsitsiklis, 1995]

« Exit (Expert Iteration) [“Thinking Fast and Slow with Trees and Deep Learning”,
Anthony et al. 2017]
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THE CUBE

* The Rubik’'s Cube consists of 26 smaller cubes called cubelets.

« There are 54 stickers in total

« Each sticker is uniquely identifiable based on the type of cubelet the
sticker is on and the other sticker(s) on the cubelet.

« The dimensionality of the representation can be reduced by
focusing on the position of only one sticker per cubelet

« Ignore the redundant center cubelets and only store the 24 possible
locations for the edge and corner cubelets.

« This results in a 20x24 state representation
* Moves are represented using face notation: F, B, L, R, U, D

« A clockwise rotation is represented with a single letter, whereas a
letter followed by an apostrophe represents a counter-clockwise
rotation

« At each timestep, t, the agent observes a state s, € S and takes an
action a,e Awith A:={FF,...,D,D’}

« After selecting an action, the agent observes a new s, = A(s, a,)
and receives a scalar reward, R(s.;;), which is 1 if s, is the goal state
and -1 otherwise.



METHODS

Approximate Policy Iteration (Brief Overview)

bles. Instead, we consider the Approximate Policy
Iteration algorithm (Bertsekas & Tsitsiklis, 1996) de-
fined iteratively by the two steps:

e Approzimate policy evaluation: for a given pol-
icy mx, generate an approximation V of the value
function V7™

o Policy improvement: generate a new policy w41
greedy with respect to Vj:

k41 (i) = arg max ;{[r(i, a,5) +7p(i, 2, 5)Vi (5)]
J

These steps are repeated until no more improvement
of the policies is noticed (using some evaluation cri-
terion). Empirically, the value functions V** rapidly
improve in the first iterations of this algorithm, then
oscillations occur with no more performance increase.

Taken from “Error Bounds for Approximate Policy Iteration”,
Remi Munos



METHODS

Autodidactic Iteration

« The sampling distribution is generated by starting from the solved state and
randomly taking actions

« Cubes closer to the starting state are weighted more heavily — a loss
weight 1 / D(x,) is assigned to each sample, where D(x,) is the number of
scrambles it tool to generate it

Algorithm 1: Autodidactic Iteration

Initialization: 0 initialized using Glorot initialization
repeat

X < N scrambled cubes

for z; € X do

for a € Ado

| (vz,(a), Pz, (a)) < fo(A(zi, a))
Yu, < max,(R(A(z;,a)) + vg,(a))
Yp, < argma'xa(R(A(x'i’ a’)) + Vg, (a’))
Y (Yuir Yp,)
0« train(fy, X,Y)

0«0
until iterations = M,

20x 24

4096

2048

512



METHODS

Autodidactic Iteration

’ny(F) ’Ux,(F')
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METHODS

Monte-Carlo Tree Search (Brief overview)

« Every node represents a state in the game
« Root node represents the initial state

« PLAYOUT is a sequence of moves that start from the current node and end in
games’s terminal state

« A node is VISITED if a PLAYOUT was started at least once in it

« A node is FULLY EXPANDED if all it's children are VISITED

* A node is TERMINAL if it has no children and the game cannot continue from it
* A nodeis a LEAF if a PLAYOUT has just started for it

« Simulation always starts at the node that has not been visited previously

« During simulation the moves are chosen with respect to a ROLLOUT POLICY
FUNCTION

. \N/gﬁl%s)chosen by ROLLOUT POLICY FUNCTION during simulation are not considered

« BACKPROPAGATION is a traversal back from the leaf node (where simulation
started) up to the root

« Ultimate goalis to find the most promising next move

« Simulates the game many times

O
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: terminal node



METHODS

Monte-Carlo Tree Search (Brief overview)

all children are marked visited - node is
fully expanded

univisted node

green arrows indicate moves chosen
C according to default policy function

O O @ O O O O

® @ @ @ @ @ ® ® @ ® © @ @ @ @

playout ends
in terminal node

oo '\

SIMULATION RESULT IS PROPAGATED
BACK UNTIL ROOT NODE IS MET

SIMULATION
STARTING NODE

GAME TREE ROOT NODE

10



METHODS

Monte-Carlo Tree Search (Brief overview)

« Node stafistics
Total number of visits N(s)
Total simulation reward Q(s)

+ BACKPROPAGATION updates N(s) and Q(s)
« Exploitation follows nodes with high Q(s), exploration nodes with low N(s)

+ Upper Confidence Bound applied to trees (UCT) is a function that let us choose the next node
among visited nodes to traverse through

UCT(s,s;) = % + e %

* Node maximizing UCT is the one to follow during Monte Carlo Tree Search tree traversal

« In competitive games Q(s,) is always computed relative to player who moves at node i
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Monte-Carlo Tree Search (Brief overview)
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METHODS

Solver (Asynchronous Monte Carlo Tree Search augmented with trained neural network fy )

1. Asearch tree is build iteratively beginning with starting state T = { s, }
Simulated traversals are performed until reaching a leaf node of T

3. Each state has a memory attatched to it:
1. Ns(a) - number of times action ‘a’ is taken from state 's’
2. W,(a) - the maximum value of action ‘a’ from state ‘s’
3. L¢(a) - virtual loss for action ‘a’ from state ‘s’
4. P,(a) - the prior probability of action ‘a’ from state ‘s’

4. Every simulation starts from the root node and iteratively selects actions by following a tree
policy until an unexpanded leaf node, s, is reached.

5. Once aleaf node, s_, isreached, the state is expanded by adding the children of s_,
{A(s,,a),Va€ A}, fothe tree T

6. Next, the value and policy are computed: (v, p,.) =f; (s,) and the value is backed up on
all visited states in the simulated path

7. The simulation is performed until either s is the solved state or the simulation exceeds a
fixed maximum computation time.

8. If s isthe solved state, the tree is expanded, adding all children of any unexplored states

9. Breadth-first search is performed to find the shortest path from starting state to the solution



METHODS

Solver details

+ (Step 4) The tree policy proceeds as follows:

For each timestep t, an action is selected by choosing A; = argmax , Ug(a) + Qg (a)
where

V2ar Nst(ar)
Ust (2) = c Py(a) m

Qst(a) = Wst(a) - Lst(a)
Lst(At) < Lst(At) +v

* (Step 5) Children updates:
For 0 <t <, the memories are updated:

Wst(At) < max (Wst(At)' Vsr)
Nst(Ap) < Ng(A) +1
Lst(At) < Lst(At) —V

« Unlike other implementations of MCTS, only the maximal value encountered along the tree is
stored, not the total value. This is because the Rubik's Cube is deterministic and not

adversarial
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RESULTS

Solution Length Comparison
15 Scrambles
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« Kociemba solved each cube in under a second, while DeepCube had a median solve time of 10 minutes.
« Although DeepCube has a much higher variance in solution length, it was able to match or beat Kociemba

in 55% of cases.

« BFS removes any trivial cycles in the path such as a move followed by its inverse, but it also improves solution
lengths by finding a slightly more efficient path between states that are within 3 moves of each other.

19



RESULTS

DeepCube Distribution of Solve Time
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Solver Nodes Seconds Nodes/Sec Mean Solution Length Memory Requirement
Rokicki 1.86E+06 2.74 1.86E+06  20.6 182 GB
Korf 122 billion 40 2E+06 20.6 2GB
DeepCube | 7.823E+03 40 2.1E+03 30.6 1 GB
Kociemba | N/A 0.035 N/A 30.5 30 MB

« The median solve length for both DeepCube and Korf is 13 moves, and DeepCube matches the optimal
path found by Korf in 74% of cases.

« The Korf optimal solver requires an average expansion of 122 billion different nodes for fully scrambled cubes

« DeepCube expands an average of only 7,823 nodes with a maximum of 24,175 expanded nodes on the
longest running sample.
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DISCUSSION

« DeepCube is based on similar principles as AlphaZero and Exlt

« One is not guaranteed to find a terminal state in the Rubik’s Cube environment and
therefore may only encounter rewards of -1, which does not provide enough information to
solve the problem

+ DeepCube addresses this by selecting a state distribution for the training set that allows the
reward to be propagated from the terminal state to other states.

+ The depth-1 BFS used to improve the policy can also be viewed as doing on-policy temporal
difference learning with function approximation.

+ DeepCube is able to teach itself how to reason in order to solve a complex environment
with only one positive reward state using pure reinforcement learning.
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