ŏ

ō

The RL Model

Tests and Comparisons 00 0 Conclutions 00

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Sky surveys scheduling using reinforcement learning

Stefan Stefanov

Sofia University

sjonkov@uni-sofa.bg

December 12, 2020

Tests and Comparisons

Conclutions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Overview

Introduction

The night sky Nature of astronomical observations Sky surveys

The RL Model

Environment Reward model State model Agent learning algorithms

Tests and Comparisons

Results Q learning performance

Conclutions

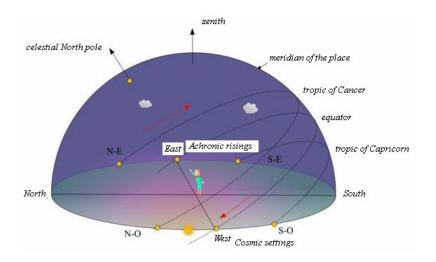
0

The RL Mod

Tests and Comparisons

Conclutions

The celestial sphere



◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

0

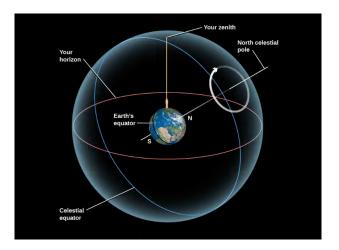
0

The RL Model

Tests and Comparisons

Conclutions

Equatorial coordinates



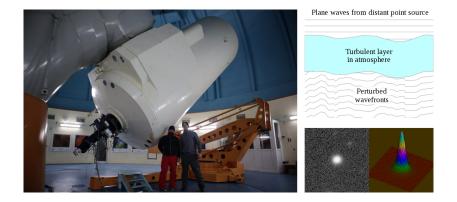
00

The RL Model

Tests and Comparisons

Conclutions

CCD Photometry



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

0

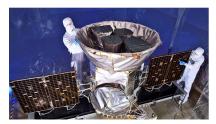
- 0
- ŏ

The RL Model

Tests and Comparisons

Conclutions

Sky Surveys



Tests and Comparisons

Conclutions

The RL Model

Actions

The agent's actions are the possible fields to take an exposure. The agent takes an action then decides the coordinates of the next field for taking an exposure.

Environment

- 1. Rewards The reward is calculated based on the quality of exposures
- 2. States The states describe all the possible exposures the agent can take through the course of the survey

Introduct 00 Conclutions

Scientific reward function

In order to define the reward the authors introduce two elements:

1. t_{eff} parameter:

This parameter evaluates the quality of the exposure.

$$t_{eff} = \left(rac{0.9}{(seeing).(airmass)^{0.6}}
ight)^2$$

2. V_n - The survey volume:

This parameter represents the amount of scientific data contained in the exposures taken.

$$V_n \propto (t_{eff})$$

The final reward function is the change in the survey volume. Bigger values for t_{eff} produce larger survey volume and positive reward.

$$r_n = \Delta V_n(t_{eff}) = V_n - V_{n-1}$$

The RL Mod

Tests and Comparisons

Conclutions

State model

The model of the state requires the definition of three elements:

- 1. Time Time is defined by using the standard astronomical Julian day (JD). This is a real number, indicating the days passed since 4713 BC. 16:00h today in JD is 2459196.0171
- State of teff array Every possible exposure in the survey period is going to be treated as a target. The set of all possible targets T conform to the action space of the agent. The accumulated teff for every target(field) can be represented by a vector:

$$\overrightarrow{\mathbf{t}_{\mathrm{eff}}} = [t_{\mathrm{eff}_0}, t_{\mathrm{eff}_1}, ..., t_{\mathrm{eff}_{m-1}}]'_{m imes 1}$$

 Current target - Each position index j in the vector corresponds to a target and the value t_{effj} is the accumulated t_{eff} for the j target.

Conclutions

State space

Then the state $s \in S$ is given by $(JD, S_{t_{eff}}, target_j)$, where $S_{t_{eff}}$ is the state of the vector $\overrightarrow{t_{eff}}$.

The JD and t_{eff} parameters can have continuous values. In order to use tabular methods these parameters have to be quantized. The authors decide to introduce quantization levels of the two parameters.

Parameters	Values		
Time levels	36		
<i>t_{eff}</i> levels	5		
Targets	3		
$\overrightarrow{\mathrm{t}_{\mathrm{eff}}}$ states	125		
Number of states	13500		

Table: State parameters with a simple quantization

Introduct

Tests and Comparisons

Conclutions

Learning algorithms

In this study the authors use two learning algorithms:

- One-step greedy algorithm
- Q-learning algorithm

Parameter	Values		
Learning rate	$\alpha = 0.4$		
Discount factor	$\gamma=$ 0.99		
Exploration probability	$\epsilon = 0.005$		

Table: Hyperparameters of the agporithm used for test

The authors made a comparison between the two algorithms and the python package Astroplan.

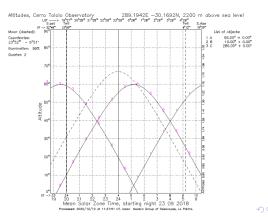
Tests and Comparisons

Conclutions

Three target test

The authors designed a simple test with 3 observational fields for a telescope at Cerro Tololo peak. Each time the agent chooses a field, the telescope does 4 exposures of 120 seconds. The fields A B and C have the following coordinates:

- Field A: $RA = 95^{\circ}$ and $DEC = 0^{\circ}$
- Field B: $RA = 10^{\circ}$ and $DEC = 0^{\circ}$
- Field C: $RA = 285^{\circ}$ and $DEC = 0^{\circ}$



The RL Mod

Tests and Comparisons

Conclutions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Results

A trajectory made by the authors would be the following: 21 exposures of C, 34 exposures of B and 0 exposures of A, leaving some remaining time.

- Astroplan The schedule obtained is 8 exposures for C, 33 for B, and 2 for A. The total reward accumulated is 73.6.
- One-step greedy obtained the optimal solution, and in the remaining time did 2 aditional exposures of A, accumulating some negative reward. Total = 96.73
- Q learning after 20000 episodes 21 exp. of C, 35 for B, and 1 for A. This schedule has a total reward of 97.25.

Tests and Comparisons

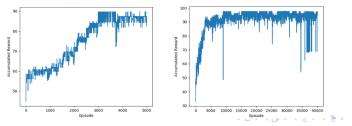
Conclutions

Q Learning performance

The alorithm performance is presented in the table below:

Description	Results 1	Results 2	Results 3	Results 4
Number of episodes	1500	5000	20000	40000
Number of actions	67	59	56	56
Number of valid actions	43	51	55	55
Number of invalid actions	24	8	1	1
Accumulated Reward	68.48	87.28	97.25	97.25
Q learning-reward/Greedy-reward	70.79%	90.79%	103%	103%
Algorithm run time in min	64	253	807	1485

The learing curves for 5000 and 400000 episodes are presented below:



ŏ

The RL Mod

Tests and Comparisons

Conclutions

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Conclutions

Is this approach for the sky survey scheduling problem practical?

- Advantages
- Disadvantages

0

0

The RL Model

Tests and Comparisons 00 0

<ロ> <四> <四> <四> <三</td>

Conclutions

The End