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Q-learning
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The one step update rule may be described as
Q(st,ar) < (1 —0ar)OCse,ar) +ar(ree +y max Q(S+1, a')).

The optimal Q function satisfies the Bellman equation

Q>(ks,a) = mné_lX Q(s,a) = rf + 7 Z pgs’ II}IE%X tas’,a’)'
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To approach the optimal policy we have the following expression

¥ = arg max OG.a)(Vs € 5)



Definition of our main

Exploitation vs Exploration

e - greedy

e Softmax

* Simulated annealing

* Probabalistic Q-learning (PQL)
* Fidelity-Based PQL (FPQL

Problem
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Fig. 1. [Illustration of the idea of probabilistic action selection method and

the effect of fidelity. (a) e-greedy method. (b) Softmax method. (¢) Basic
probabilistic action selection method. (d) Fidelity-based probabilistic action
selection method.



Fidelity

* In guantum mechanics, notably in quantum information theory, fidelity is a
measure of the "closeness" of two quantum states.

* An evolving state of the controlled system can be expanded in terms of the
eigenstates in the set
8 D = {Ip)Y,.
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* We define Fidelity as follows
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Reinforcement Strategy

Definition 1: The probability distribution on the state-
action space (discrete case) of a RL problem is characterized
by a probability mass function defined on the state set S and
the action set A = (J, g A(s), where A is the set of all the
permitted actions for state s. For any s € § and a € A(y), the
probability mass function is defined as p(s,a) > 0 and for a
certain state s, it satisfies

Z p(s,a) = 1.
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* The goal of PQL is to learn a mapping from states to actions.
* The agent needs to learn a policy m to maximize the expected

 sum of discounted reward for each state

Q(ga) Z pP Bils, a) r(l+7’ ZP Q(g a)

(lEA (s)

Ost, ar) < (1=ar) Q(st ar) + s (rr41+7 max Q(sy11,a)
a

p(si, ar) < p(si, @) +k(ry1 +max O(s;41,a’))
a

The algorithm boosts the following merits

1. The learning algorithm

possesses more reasonable credit assignment using a
probabilistic method and the action selection method is more
natural

without too much difficulty for parameter setting.

2.The

method provides a natural re—exploring mechanism



oo Algorithm 1 Probabilistic Q-Learning

Io.1ooo T ——
o200 1: Initialize Q(s, a) arbitrarily

gm 2: Initialize the policy 7 : P = (p™ (s, a))nxm to be evaluated
os00 3: repeat (for each episode)
g:‘x 4:  Initialize t =1, s,
os0 5:  repeat (for each step of episode)
t0 O a; <— action a; with probability p(s;, a;) for s;

7

0.9000
Take action a;, observe reward r;41, and next state

St+1
> - l:m" 8: Q (st ar) < O(st, ar) +at5,Q+1
| gm 9: where 5,Q_|_1 = rip1 + ymaxy Q(si41,a") — Q(st, ar)
satos. 105 p(si,ar) < p(se,ar) +k(rier +maxy Q(syv1,a’))
saom: 1L Normalize {p(s:, ai)li=1,2,....m}
12: t<—t+1

13:  until s, 1s terminal
" 14: until the learning process ends




Reasons for including fidelity.
For most complex reinforcement learning problems, the direction of achieving the objective is always delayed due to

the lack of feedback information during the learning process unless the agent reaches the target state.

The updating rule of fidelity-based PQL for the Q function Is the same as for PQL, the difference is in the update rule for
the probability distribution

p(Shat) <« p(SI’at) +k(r1+l +m2}X Q(Sl—i—laa/)
a

+F(sei1, Starget))-

Theorem 1 (Convergence of FPQL): Consider an FPQL
agent in a nondeterministic Markov decision process, for every
state-action pair s and a, the Q-value Q;(s, a) will converge
to the optimal state-action value function Q*(s,a) if the
following constraints are satisfied.

1) The rewards in the whole learning process satisfy
(Vs,a)|rd| < R, where R is a finite constant value.

2) A discount factor y € [0, 1) is adopted.

3) During the learning process, the nonnegative learning
rate a, satisfies

T T
lim Za, =00, lim a,2 < 00.

T—oo T—0o0
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Algorithm 2 Fidelity-based Probabilistic Q-learning

1: Initialize Q(s, a) arbitrarily

2: Initialize the policy 7 : P™ = (p™ (s, a))nxm to be evaluated
3: repeat (for each episode)

4. Inmtialize t = 1, s;

5 repeat (for each step of episode)

6: a; < action a; with probability p(s;, a;) for s;

7 Take action a;, observe reward r;41, and next state
St+1

8: O(s,ar) < O(sy,ar) + a,(SIQH

0: where 5,Q+1 =riy1 +ymaxy Q(spr1,a’) — O(st, ar)

10: p(si,ar) < p(sy,ar) + kézp+l

Ik where (5,1)_“ = ri41 +maxy Q(si41,a") + F($141, Starget)

12: Normalize {p(s, ai)li=1,2,...m}

13: t<—t+1

14:  until s;4 is terminal
15: until the learning process ends
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olution
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Parameters

The difference between the proposed fidelity-based probabilistic exploration strategy and the existing exploration
strategies can be explained from a point of view of physical mechanism



FIDELITY-BASED PQL FOR LEARNING CONTROL OF
QUANTUM SYSTEMS

A. Learning Control of Quantum systems

Imrodﬁcing a control £(t) € L>(R) acling on the system via
a time-independent interaction Hamiltonian H; and denoting 1+
lw(t = 0)) as |po), C(t) = (ci(1))Y, evolves according to
the Schrodinger equation |32

[ hC(t) = [A + e(t)B]C (1)

©0.5-
=

C(tr=0)=0Cy 0-

W) = U — n)lwn)

(a)

Assume that the 14
control set {¢j,j = 1,..., m} is given. Every control &; ==

W _.
corresponds to a unitary operator U;. The task of learning %0'5
control is to find a control sequence {g;,/ =1, 2, 3, ...} where
g1 €18y d = Ly oy m} to drive the quantum system from an

initial state |yg) to the target state [y r).
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Quantum Controlled Transition Landscapes

* A control landscape is defined as the map between
the time-dependent control Hamiltonian and associated values

of the control performance functional. Most quantum control
problems can be formulated as the maximization of an objec-
tive performance function. For example, as shown in Fig. 5,
the performance function J(g) 1s defined as the functional
of the control strategy ¢ = ¢;,i = 1,2,..., M, where M is
a positive integer that indicates the number of the control
variables (M = 2 for the case shown in Fig. 5).

Although quantum control applications may span a variety
of objectives, most of them correspond to maximizing the
probability of transition from an initial state to a desired
final state

For the state transition problem with t € [0, T ], we define
the quantum controlled transition landscape as

J (&) = e (Uge,1) lwo) (wol U, o lw ) (wy))

The objective of the learning control system is to find a global
optimal control strategy &*, which satisfies

e* = argmax,_J (¢).

If the dependence of U(ry on ¢ is suppressed (see [42]),
(18) can be reformulated as

JWU) = tr(U(T)|V’O><V’O|U€T)|‘//f><‘//f|)-
Theorem 2: For the quantum control problem defined
with the dynamic control landscape (18) and the kinematic
control landscape (20), respectively, the properties of the
solution sets of the quantum controlled transition landscape
are listed as follows.

1) The kinematic control landscape is free of traps (i.e.,
all critical points of Jx (U) are either global maxima or
saddles) if the operator U can be any unitary operator
(i.e., the system is completely controllable).

2) The dynamic control landscape is free of traps if:
1) the operator U can be any unitary operator and
2) the Jacobian 60U, 1)/d¢ has full rank at any e.



Learning Control of a Spin-(1/2) Quantum

System

The spin-(1/2) system is a typical 2-level quantum system
and has important theoretical implications and practical appli-
cations. Its Bloch vector can be visualized on a 3-D Bloch
sphere as shown in Fig. 6. The state of the spin-(1/2) quantum
system |y) can be represented as

0 ; %)
=cos —|0 ' sin —|1
ly) 0092|)+e 91n2| )

where § € [0,7] and ¢ € [0,2x] are polar angle and
azimuthal angle, respectively, which specify a point a =
(x,v,2) = (sinfcosg@,sinf sinp, cosf) on the unit sphere
in R°.
The propagators {U;,i = 1, 2, 3} are listed as follows:

U = e_”:%
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Now the control objective is to control the spin-(1/2) system
from the initial state (¢ = (7/60), ¢ = (x/30)) to the target
state (# = (417 /60), 9 = (297 /30)) with minimized control

{si = |wi)),i = 1,2,...,n and the action set is
A=laj =u;},j=1,2,...,m. The experiment settings for
these algorithms are listed as follows: r = —1 for each control
step until it reaches the target state, then it gets a reward of
1000; the discount factor y = 0.99, the learning rate
a = 0.01 and the Q-values are all initialized as 0. For PQL
and fidelity-based PQL, k = 0.01. The e-greedy exploration
strategy is used and € = 0.1.
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Fig. 7.
sequence used (0 for no pulse, —1 for negative pulse and +1 for positive pulse).
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Demonstration of a stochastic control case without learning. The left figure shows the state transition path and the right figure shows the control
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Fig. 8. Learning performance of fidelity-based PQL and the learning results with an optimal control sequence.
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Fig. 10. Learning performance of standard QL with z-greedy policy and the learning results with an optimal control sequence.



Learning Control of A -Type Quantum System

[y (1)) = c1(0)[1) + c2(¢)[2) + c3(1)[3)

13)
permitted controls are a finite number of (positive or negative)
control pulses, i.e., we have the propagators
UE — e—fAf(H()+O.|EH|) (30)
where At = 0.1 |2>
1.500 001
Hy=( 0 10), Hy=[001 (31)
0 00 1 10 Il)
and £ € {0,&%1,£2,...,420} 1s the number of chosen

control pulses at a certain control step.



We apply the fidelity-based PQL, PQL, and QL algorithms to
this learning control problem, respectively. First, we reformu-
late the RL problem of controlling a quantum system from
an initial state Sipitial = |Winitial) to a desired target state
Starget = |Wiarger) @S follows: the number of control steps is
fixed as a constant number of 100, so that we can use a virtual
state set to construct the state-action space instead of the real
state space (with a very high dimension) of the A-type system
and the state set S = {s;},i =1,2,..., 101 and the action set
sSA=la;j=Ej=j—-21},j=1,2,...,4]. The experiment
settings for these algorithms are listed as follows: r = 0 for
each control step until it reaches the target state at the end of
the control process where it gets a reward of r = 1000; the
discount factor y = 0.99, the learning rate « = 0.01, and the . . : -
Q-values are all initialized as 0. For PQL and fidelity-based 0 20 40 60 80 100
PQL, k = 0.01. The e-greedy exploration strategy is used for Control steps

QL and ¢ = 0.1. The fidelity for a current policy x is defined

as F = |<'/’_‘;|W(argel)|-
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Fidelity
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Fig. 15. Learned optimal control pulse sequence.
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Fig. 16. Population evolution trajectories with the learned optimal control
pulse sequence.



