Applications of Reinforcement Learning in the Physical Sciences


offered: Winter Semester 2020/21
instructor: Marin Bukov, PhD
time: Sat, 4:30 pm - 6:30 pm, ONLINE
exam: scientific presentation, participation in seminar talks
credits: 3 ECTS


List of Talks and Speakers
  Title Speaker Date Time Slides
0. Breakthrough Applications of Reinforcement Learning in Science M. Bukov 17/10 4:30pm  
1. Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection N. Pashov 7/11 4:30pm pdf
2. Dota 2 with Large Scale Deep Reinforcement Learning A. Mitsov 7/11 5:30pm pdf
3. A Deep Reinforcement Learning Approach for Automated Cryptocurrency Trading S. Gargova 14/11 4:30pm pdf
4. Reinforcement Learning with Neural Networks for Quantum Feedback Z. Abdrahim 21/11 4:30pm pdf
5. Solving the Rubik’s cube with approximate policy iteration S. Petrov 28/11 4:30pm pdf
6. Setting up experimental Bell test with reinforcement learning A. Kirkova 5/12 4:30pm pdf
7. Sky surveys scheduling using reinforcement learning S. Stefanov 12/12 4:30pm pdf
8. Mastering the game of Go without human knowledge D. Davidkov 12/12 5:30pm pdf
9. Fidelity-Based Probabilistic Q-Learning for Control of Quantum Systems H. Tonchev 19/12 4:30pm pdf
10. Creation and manipulation of quantized vortices in Bose-Einstein condensates using reinforcement learning B. Ilik 9/1 4:30pm pdf



List of possible papers to present (students should feel free to present any paper of their own choice, but check with the instructor first):


Description


This special seminar provides an introduction to applications of Reinforcement Learning (RL) in the physical sciences. Students will perform a scientific literature survey and prepare a scientific talk to present to the audience of the seminar. In particular, we will discuss seminal applications of RL in physics. The topics can be chosen according to the students’ interests: e.g., successful navigation of turbulent flows, preparation of the states of quantum bits (qubits), identification of noise-robust quantum channels required for quantum computing, exploring the vast space of string vacua. Should there be interest by a student, we will also cover important RL publications in the STEM (science, technology, engineering, mathematics) fields. The seminar is suitable for advanced bachelor students, master students, and PhD students, from all STEM fields.


Check out the accompanying lecture course worth 6 ECTS.


Prerequisites
  • math prerequisites: linear algebra, analysis in many variables, basic concepts of probability theory. Proficiency in deep learning is not required but can be very useful.

  • physics prerequisites: general physics, basic statistical physics and basic quantum mechanics knowledge will be helpful for understanding the examples we will discuss.

  • language: seminar presentations will be in English.

Supplementary Literature

Students can download research papers for free from the arXiv. Additionally, you may want to check these resources:


Final Grade

Students are required to prepare a scientific presentation of a research paper or topic. Topics / papers will be provided by the instructor, but students are encouraged to make suggestions based on their own interests. The student will be guided by the instructor to prepare the presentation. The presentation should be given during the semester; it will be evaluated and, together with participation in the seminar, they form the final grade for the seminar.